

Blyth Groundwater Supply 2015 Annual Report

Corporation of the Township of North Huron

PO Box 90, 274 Josephine St, Wingham Ontario Phone: (519)357-3550 Fax: (519)357-1110

Website: www.northhuron.ca

Date: February 25 2016

Compliance with the Safe Drinking Water Act and Regulation 170/03

This report is a summary of water quality information for the North Huron Blyth Well Supply (Large Municipal Residential Drinking Water System) and published in accordance with section 11 and schedule 22 of Ontario's Safe Drinking Water Act, O. Reg 170/03 for the reporting period of January 1, 2015 to December 31, 2015.

Requirements

The Blyth Well Supply is required to be operated within the criteria specified in, but not limited to:

Permit to Take Water: 7383-7BLM5Q Drinking water works permit 090-201 Municipal Drinking water license 090-101 Safe Drinking Water Act (O. Reg 128, 169, 170)

The annual inspection was conducted by the Ministry of the Environment and Climate Change starting on December 16th 2015, the inspection was completed with one non-compliance identified. A secondary disinfection residual was not recorded during the 2015 year, actions have been taken to rectify the non-compliance and to prevent it from happening in the future.

There was an adverse water quality report from samples collected on February 10, 2015 with 1MAC of Total coliform, the resulting resamples were clear and no further action were required. One precautionary boil water notification was issued due to a January 28, 2015 Water main break, 14 users were notified of the boil water notification, the lift notice was issued as a result of good samples received on January 30, 2015.

Permit to Take Wate	er 7383-7BLM	5Q Cor	npliance Rep	ort		
3.2 -Maximum Amo	unt of Taking I	Permitte	ed			
	Max/Day on Permit Peak Flov %of Limit					
Well #1 (in m3)	653	m3	455	69.7	%	
Well #2 (in m3)	1123	m3	810	72.1	%	
			5			
3.2 - Average Annı	ual Amount of	Taking	Permitted			
	m3/year		m3/year		Control of the Contro	
Well #1 (in m3)	238345		85177	35.7	%	
Well #2 (in m3)	409968		67493	16.5	%	
		· · · · · · · · · · · · · · · · · · ·				
Capacity Report						
Total Peak Flow						
	Maximum		Actual	%of Cap		
Capacity (m3/d)	1149		810	70.5	%	
Total Average Flow						
Capacity (m3/d)	1149		420.0	36.6	%	

The above summary table was taken from the attached supporting documentation indicated that at the maximum peak demand for 2015, we reached 69.7% of the water taking limit for Well #1 and 72.1% of the limit for well #2.

The above summary table as taken from the attached supporting documentation indicates that at the maximum peak demand for 2015, we were at 70.5% of the rated capacity. As an annual average, we were at 36.6% of the rated capacity of the plant which indicates we have adequate capacity to supply average and peak demands.

Quarterly samples were taken and tested for nitrites and nitrates from the raw well water and are all well under the limits as specified in O.Reg 169 which is largely unchanged from previous years.

The annual samples were taken from each raw-water well and tested for Sodium and Fluoride. The results indicate we continue to have elevated naturally occurring sodium and fluoride levels that are slightly at or above O.Reg 169 limits.

Microbiological sampling was done weekly with a total of 104 samples being taken from the raw well water, 52 samples being taken from the treated water pumped to the distribution

and 167 samples being taken from the distribution system. One distribution sample was adverse with a total coliform count of 1. This was resampled and came back clear.

Well #5 Environmental Assessment has been posted and completed, design is in final stages with the tender documents to be prepared to construct treatment portion and to be operational by the end of 2016.

Report Prepared By:

Kyllie McDonagh,

Utilities Department

Compliance coordinator/ QMS Rep Administrative Assistant

kmcdonagh@northhuron.ca

OPTIONAL ANNUAL REPORT TEMPLATE

Drinking-Water System Number: Drinking-Water System Name:

Drinking-Water System Owner: Drinking-Water System Category:

Period being reported:

220001496

Blyth Groundwater Supply

The Corporation of The Township of North Huron

Large Residential

January 1, 2015 to December 31, 2015

Complete if your Category is Large Municipal Residential or Small Municipal Residential

Does your Drinking-Water System serve more than 10,000 people? Yes [] No [X]

Is your annual report available to the public at no charge on a web site on the Internet? Yes [X] No[]

Location where Summary Report required under O. Reg. 170/03 Schedule 22 will be available for inspection.

The Township of North Huron Municipal Office 274 Josephine St., Wingham, Ontario

Complete for all other Categories.

Number of Designated Facilities served:

n/a

Did you provide a copy of your annual report to all Designated Facilities you serve?

Yes [] No []

Number of Interested Authorities you report to:

Note: For the following tables below, additional rows or columns may be added or an appendix may be attached to the report

List all Drinking-Water Systems (if any), which receive all of their drinking water from your system:

Drinking Water System Number
S S S S S S S S S S S S S S S S S S S

Did you provide a copy of your annual report to all Drinking-Water System owners that are connected to you and to whom you provide all of its drinking water?

Yes [] No []

Indicate how you notified system users that your annual report is available, and is free of
charge.
[] Public access/notice via the web
[] Public access/notice via Government Office
[] Public access/notice via a newspaper
[] Public access/notice via Public Request
[] Public access/notice via a Public Library
[X] Public access/notice via other methodBilling Insert

Describe your Drinking-Water System

The **Blyth** water supply system is a stand alone system consisting of two drilled wells fitted with pumps capable of pumping the volume specified in the MOE Permit to Take Water. The raw water consistently has substantial naturally occurring hardness and relatively high iron content that requires sequestering to prevent discoloration in the distribution system which is typical of all drilled wells in the area. The raw water also has fluoride concentrations that hover at or just above the maximum allowable concentration in O.Reg 169/03 which is typical of the drilled wells in the area. Chlorine, (a critical process) and an iron sequestering agent are added to the raw water prior to entry into a baffled contact tank that satisfies the chlorine contact time required with adequate chlorine residual to disinfect.

From the contact tank/reservoir the water flows to the high lift building that houses two electrically driven high lift pumps, as well as a diesel engine driven fire pump, that are capable of maintaining adequate system pressure. The water level in the reservoir is maintained by a level controller that starts and stops the well pumps. Also housed in the building is a standby emergency generator that allows operation of the equipment during extended power interruptions. The building contains cushion tanks that absorb hydraulic shocks and maintain pressure during brief power interruptions. The treated drinking water is monitored for chlorine residual and turbidity by on-line equipment connected to an auto dialer. The monitoring system will alert the on-call operator to respond if the set points are breached. The chlorine and turbidity analysis data levels are stored on a data logger.

The distribution system has no elevated storage and relies on the pumps and cushion tanks to maintain pressure. Critical processes to ensure safe water are adequate chlorination and maintenance of system pressure. The monitors activate an alarm through the autodialer if the setpoints are breached.

The raw water has abnormally high chlorine demand, coupled with sequestering agent and high background sodium levels that result in elevated sodium in the treated water just above the maximum allowable concentrations in O.Reg 169/03.

Were any significant expenses incurred to?

[] Install required equipment

[] Repair required equipment

[] Replace required equipment

Please provide a brief description and a breakdown of monetary expenses incurred

There were no significant expenses incurred in 2015

Provide details on the notices submitted in accordance with subsection 18(1) of the Safe Drinking-Water Act or section 16-4 of Schedule 16 of O.Reg.170/03 and reported to

Spills Action Centre

Incident Date	Parameter	Result	Unit of Measure	Corrective Action	Corrective Action Date
Feb 10-15	TC	1	Cfu/100 ml	resample	Feb 12-15

Microbiological testing done under the Schedule 10, 11 or 12 of Regulation 170/03,

during this reporting period.

	Number of Samples	Range of E.Coli Or Fecal Results (min #)-(max #)	Range of Total Coliform Results (min #)-(max #)	Number of HPC Samples	Range of HPC Results (min #)-(max #)
Raw	104	0	0	0	
Treated	52	0	0	52	0-80
Distribution	167	0	0-1	52	0-2000

Ontario Drinking-Water Systems Regulation O. Reg. 170/03

Operational testing done under Schedule 7, 8 or 9 of Regulation 170/03 during the period covered by this Annual Report

periou covereu b	y this Annua	n Keport.	
	Number of	Range of Results	-
	Grab	(min #)-(max #)	
	Samples		
Turbidity	8760	0.01-9.95	
Chlorine	8760	0.23-1.74	-
Fluoride (If the	0		
DWS provides			
fluoridation)			

NOTE: For continuous monitors use 8760 as the number of samples.

NOTE: Record the unit of measure if it is not milligrams per litre.

Summary of additional testing and sampling carried out in accordance with the

requirement of an approval, order or other legal instrument.

Date of legal instrument issued	Parameter	Date Sampled	Result	Unit of Measure
July 13-10	Fluoride (W1 RW)	Sept 2-15	1.18	Mg/L
July 13-10	Fluoride(W2 RW)	Sept 2-15	1.83	Mg/L
July 13-10	Sodium (W1 RW)	Sept 2-15	14.9	Mg/L
July 13-10	Sodium (W1 RW)	Sept 2-15	18.8	Mg/L

Summary of Inorganic parameters tested during this reporting period or the most recent sample results – see attached

	Well #1					T	4 Summary	
Month	Well 1 Flow (m3)	Chl'n used (Kg)	CI I	Dose	Si (L)	Si Dose	Pump Hrs	RWW Turb
January	6811	33.9		4.98	33.42	1.5	266.30	
February	6571	32.1		4.89	39.57	2.3	254.10	
March	8126	42.5		5.24	55.76	2.7	315.70	
April	6759	36.6		5.42	44.69	2.6	262.70	0.21
May	7154	40.0		5.60	49.82	2.7	278.50	0.22
June	6810	38.5		5.65	53.30	3.0	270.10	0.22
July	7757	44.3		5.72	63.35	3.2	308.40	0.21
August	7353	40.1		5.43	60.33	3.2	291.90	0.22
September	7098	38.5		5.41	55.76	3.1	282.40	0.22
October	6688	36.0		5.39	47.15	2.7	266.40	0.19
November	6710	34.1		5.09	52.27	3.0	266.30	0.21
December	7340	37.1		5.05	60.27	5.1	293.40	0.21
Total	85177	453.8	6	3.85	615.67	35.0	3356.20	2.5
Min	6571	32.1		4.89	33.42	1.5	254.10	0.2
Max	8126	44.3		5.72	63.35	5.1	315.70	0.2
Avg	7098	37.8		5.32	51.31	2.9	279.68	0.2

Township	Well #2							,	
Month	Well 2 Flow (m3)	Chl'n used (Kg)	CI	Dose	Si (L)	Si Dose	Pump Hrs	RWW Turb	Well 2 Static
January	5652	29.8		5.23	72.35	1.9	223.80	0.18	
February	5097	26.9		5.24	62.50	1.7	203.50	0.20	
March	5752	28.3		4.90	70.34	1.8	-	0.20	
April	5349	27.9		5.17	62.94	1.8	212.40	0.18	7.23
May	6524	35.2		5.33	39.34	1.7	259.10	0.23	7.65
June	5786	30.6		5.23	75.67	1.8	229.30	0.20	7.58
July	5764	30.9		5.31	79.30	2.0	228.20	0.24	7.61
August	5485	30.0		5.44	77.28	2.0	211.40	0.21	8.01
September	5833	32.7		5.57	78.62	1.9	229.60	0.17	8.10
October	5618	31.0		5.47	72.13	1.8	219.60	0.18	8.24
November	5744	30.7		5.35	79.97	2.0	228.60	0.18	8.05
December	4889	26.4		5.35	78.18	2.2	191.10	0.24	7.31
Total	67493	360.4	(63.59	848.61	22.6	2663.40	2.39	93,16
Min	4889	26.4		4.90	39.34	1.7	191.10	0.17	7.14
Max	6524	35.2		5.57	79.97	2.2	259.10	0.24	8.24
Avg	5624	30.0		5.30	70.72	1.9	221.95	0.20	7.76

Township of	f North H	uron - Bl	yth Wate	r - 2014 S	ummary	
Month	Total Flow m3	Max Daily Flow	Total CI Kg Used	Avg Free Cl Res	Total Si Used L	Avg Turbidity
January	12515	540	63.7	1.08	105.8	0.05
February	11762	544	59.0	1.05	102.1	0.04
March	13917	635	70.9	1.04	126.1	0.05
April	12151	810	64.5	1.06	107.6	0.06
May	13726	595	75.2	1.13	89.2	0.04
June	12669	575	69.1	1.03	129.0	0.06
July	13580	667	75.3	1.04	142.6	0.11
August	12890	581	70.1	1.05	137.6	0.07
September	13004	551	71.2	1.01	134,4	0.06
October	12390	574	67.0	1.07	119.3	0.05
November	12531	638	64.9	1.18	132.2	0.05
December	12338	572	63.5	1.06	138.4	0.04
Total	153473		814.2		1464.3	
Min	11762		59.0	1.01	89.2	0.04
Max	13917	810	75.3	1.18	142.6	0.11
Avg	12789	420	67.8	1.07	122.0	0.06

Permit to Take Wate	r 7383-7BLM5C	Complian	ce Report		
3.2 -Maximum Amou	ınt of Taking Pe	rmitted			
	Max/Day	on Permit	Peak Flow	%of Limit	
Well #1 (in m3)	653	m3	455	69.7	%
Well #2 (in m3)	1123	m3	810	72.1	%

3.2 - Average Annua	I Amount of Taking P	ermitted		
	m3/year	m3/year		danga
Well #1 (in m3)	238345	85177	35.7	%
Well #2 (in m3)	409968	67493	16.5	%

Capacity Report				
Total Peak Flow				
	Maximum	Actual	%of Cap	
Capacity (m3/d)	1149	810	70.5	%

Total Average Flow			
Capacity (m3/d)	1149	420.0	36.6 %

Distribution Chlorine Residual Summary	
Total Samples	467
Min Cl Residual	0.09
Max Cl Residual	1.24
Average Cl Res	0.85

	AUVEISE	Advorso	Deteriorating (>100)	Detoriorotion (>400)	Safe	- Callpies	Total Camples								North nuron - blyth 2015 Microbiological Summary
	C	2		100	מת	70	20	EC	TO	Raw Water			VVEII # I	1A/-11 #4	15 Microbiologic
	c	2		100	3	20	70		-	_					al Sum
	C			70	S	20	70	C EC		reated Water					mary
	0	1		O N	CI	52			-	77				The second named in column 2 is not the column	
-	0			70	7	52		TC EC	-	Raw Water					
	0			70	כיי	52	-	TC	-				Well #2		
	0			20	10	52	Annual State of the last of th	C EC		reated Water			#2	Charles of the Control of the Contro	
	0			52		52		ი _		-Y					
-	0		O	52		52		HPC		Treated water DOF			TW POE		
			_					OTO	1	<u></u>	-	-			
-	_		_	166		167		,					Dist		
				167		167	ГС			***************************************			Distribution Summary		
	0			52		7 50		ABC.				,	nmarv		

Water Works Name:

Well No. (if applicable):

Year:

Serviced Population

Laboratories Which Performer Analyses:

Water Works #

Blyth Well Supply

Well #1 & #2

2015

1005

SGS Lakefield Research

220001496

1		Analysis							
Parameter	Date (MM/DD/YY)	(ug/L)	(ug/L)	Allowable Level					
Schedule 23	(Willey DD) 11)	Mar 12-15		(ug/L)					
Antimony		0.02	0.02	6					
Arsenic		0.9	1.1	25					
Barium		135	118	1000					
Boron		75.1	60	5000					
Cadmium		0.033	0.004	5					
Chromium		0.03	0.03	50					
Mercury		0.01	0.01	1					
Selenium		1<	0.04	10					
Uranium		0.093	0.73	20					

Water Works Name:

Well No. (if applicable):

Year:

Serviced Population

Laboratories Which Performer Analyses:

Water Works #

Blyth Well Supply

Well #1 & #2

2015

1005

SGS Lakefield Research

220001496

5000 8000 50000		220001496	
1			Maximum
			Allowable Leve
<u>Parameter</u>	(ug/L)	(ug/L)	(ug/L)
Schedule 23 & 24	Mar 12-15	Jun 10-15	
Benzene	<0.32	<.32	5
Carbon Tetrachloride	<0.16	<.16	5
1,2-Dichlorobenzene	<0.41	<.41	200
1,4-Dichlorobenzene	<0.36	<.36	5
1,1-Dichloroethylene	<0.33	<.33	14
1,2-Dichloroethane	<0.35	<.35	5
Dichloromethane	<0.35	<.35	50
Monochlorobenzene	<0.3	<.3	80
Tetrachloroethylene	< 0.35	<.35	30
Trichloroethylene	<0.44	<.44	50
Vinyl Chloride	<0.17	<.17	2
Diquat	<1	<1	70
Paraquat	<1	<1	10
Glyphosate	<1	<1	280
Polychlorinated Biphenyls	<0.04	<.04	3
Benzo(a)pyrene	<0.004	<.004	0.01

2,4-dichlorophenol	<0.15	<.15	900
2,4,6-trichlorophenol	<0.25	<.25	5
2,3,4,6-tetrachlorophenol	<0.20	<.20	100
Pentachlorophenol	<0.15	<.15	60
Alachlor	<0.02	<.02	5
Aldicarb	<0.01	<.01	9
Aldrin+Dieldrin	<0.01	<.01	0.7
Aldrin	<0.01	<.01	
Dieldrin	<0.01	<.01	
Atrazine+N-dealkylated m	<0.01	<.01	5
Atrazine	<0.01	<.01	
De-ethylated atrazine	<0.01	<.01	
Azinphos-methyl	<0.02	<0.05	20
Bendiocarb	<0.01	<.01	40
			Maximun
			Allowable Le
<u>Parameter</u>	(ug/L)	(ug/L)	(ug/L)
Chlordane	<0.01	<0.01	(ug/L)
a-chlordane	<0.01	<0.01	
g-chlordane	<0.01	<0.01	
Oxychlordane	<0.01	<0.01	
Chlorpyrifos	<0.02	<0.02	90
Cyanazine	<0.03	<0.03	10
Diazinon	<0.02	<0.02	20
(DDT)+Metabolites	<0.01	<0.01	
pp-DDT	<0.01	<0.01	30
pp-DDD	<0.01	<0.01	
pp-DDE	<0.01	<0.01	
pp-DDT	<0.01	<0.01	
Dimethoate	<0.03	<0.03	
Diuron	<0.03	<0.03	20
Heptachlor-Heptachlor Ep	<0.01	<0.01	150
leptachlor	<0.01	<0.01	3
leptachlor epoxide	<0.01	<0.01	
indane	<0.01	<0.01	
Malathion	<0.02	<0.02	4
Methoxychlor	<0.01	<0.02	190
Metolachlor	<0.01	<0.01	900
/letribuzin	<0.02	<0.02	50
arathion	<0.02	<0.02	80
horate	<0.02	<0.02	50
rometryne	<0.03	<0.01	2
imazine	<0.03	<0.03	1
emephos	<0.01	<0.01	10
erbufos	<0.01		280
riallate	<0.01	<0.01	1
rifluralin	<002	<0.01	230
aidini	<u> </u>	<0.02	45

2,4-dichlorophenoxyacetic	<0.19	<0.19	100
2,4,5-trichlorophenoxyace	<0.22	<0.22	280
Bromoxynil	<0.33	<0.33	5
Dicamba	<0.20	<0.20	120
Diclofop-methyl	<0.40	<0.40	9
Dinoseb	<0.36	<0.36	10
Picloram	<1	<1	190