HOWSON DAM
 DAM STABILITY ASSESSMENT REPORT

DRAFT REV C

KGS Group 17-3212-001
May 2018
PREPARED BY:

Yongbo Fu P. Eng.
Senior Structural Engineer
\qquad
Fuad Curi P. Eng.
Water Resources Department Head
APPROVED BY:

Holly Hampton Ph.D. P.Eng.
Civil/Structural Department Head

EXECUTIVE SUMMARY

The Howson Dam, on the North Branch of the Maitland River (North Maitland River), is located north of Highway 86 in Wingham, in the Township of North Huron, Ontario. The available documentation suggests that the dam was originally built to prevent flooding and to create a reservoir for recreational use. It has two distinguishable components: the South Dam built approximately in the 1920's and the North Dam, built in 1966, to provide additional spill capacity.

The South Dam consists of four overflow weirs with a sill level of El. 309.3 m. Their crest lengths are, from North to South, $10.6 \mathrm{~m}, 11.5 \mathrm{~m}, 10.8 \mathrm{~m}$ and 10.7 m . The North Dam consists of three sluiceway bays of lengths: $3.8 \mathrm{~m}, 4.0 \mathrm{~m}$ and 3.8 m . They have a sill elevation of approximately El. 306.6 m and each has seven stop-logs that are operated to maintain the reservoir levels and removed to provide spill capacity in the spring. Historically, the dam was operated to maintain a reservoir level of approximately El. 310 m ; but it has been operated at lower levels in recent years. There is an earth embankment section between the North and the South dams, of approximately 20 m of length. There is a bridge located on the deck of the dam, on Water Street in Wingham.

The concrete in the South Dam at the Howson Dam and in the bridge structure shows severe signs of deterioration. The bridge has been closed to vehicular traffic; but at the time of initiation of this project it was open to public use. Evaluations of the concrete were carried out by the firms BM Ross and Associates Ltd and Atkinson-Davies Inc. in the period from 1983 to 1985. At that time, attempts to obtain concrete cores on the South Dam were terminated at shallow depths due to the poor condition of the concrete. The two consultant firms concluded that the concrete in the dam and bridge did not provide a basis for satisfactory long-term repair works and that the only course of action available was removal and replacement of these structures.

The available documentation also indicates that through the history of the dam, works have been required to prevent or mitigate undermining of the foundation. Extension of the apron and sheet-piling were carried out in the downstream end of the South Dam, as early as the 1940's or 1950's. More recently, in 1963, additional sheet-piling was required for one section of the South Dam. Repairs for foundation undermining of the North Dam were also required in the 1980's.

It was indicated by the Township of North Huron that an Environmental Assessment (EA) was initiated in 2016 to evaluate alternatives for repairing the dam. Correspondence from that period by BM Ross and Associates Ltd refer to a plan to repair the dam that included re-facing and restoration of the upstream concrete sill and patch restoration on the piers, with a cost of approximately $\$ 485,000$ plus HST. During this process the MNRF was consulted and it was concluded that it would most likely require application to obtain approval under Section 16 of the Lakes and Rivers Improvement Act (LRIA). For this application, a dam safety and structural stability assessment are required.

The Township of North Huron retained KGS Group to carry out a dam safety assessment of the dam, determine the Hazard Potential Classification (HPC) and the Inflow Design Flood (IDF), evaluate the adequacy of the discharge capacity at the site to convey the IDF, conduct site investigations and testing for the concrete and structural stability assessment on the South Dam. The assessment of the stability of the South Dam was to be performed considering the conditions with and without the bridge in place. These analyses were required to be conducted in accordance with the Bulletins and Guidelines issued by MNRF in 2011, associated to the

Lakes and Rivers Improvement Act (LRIA) and its Administrative Guide. The scope of the project did not include an assessment of the condition of the bridge or analyses of its strength.

KGS Group carried out hydrologic analysis to determine flood flow values for the site, based on data from Water Survey of Canada (WSC Station 02FE005). It was estimated that the 100-Year Flood had a peak flow value at the site of $415 \mathrm{~m}^{3} / \mathrm{s}$. This value is in the same range of previous estimates found in the available documentation. An order of magnitude of $1,400 \mathrm{~m}^{3} / \mathrm{s}$ was obtained for the Maximum Probable Flood (PMF).

KGS Group also carried out simulations of a dam breach, using hydraulic models, to evaluate the potential consequences of a breach of the Howson Dam in two conditions: normal (sunnyday) and during a large flood. The dam break consequences were evaluated, in accordance with the 2011 LRIA associated bulletins, in terms of Incremental Loss of Lives (ILOL), and damages to third party assets, the environment and to cultural assets.

The analysis indicated ILOL values between 1 and 10 for a dam breach in normal (sunny-day) conditions, mainly associated to the recreational use of the areas downstream of the dam. It corresponded to an HPC of HIGH and a design ground motion with exceedance probability of 1 in 2,500 years. The analysis also indicated that a dam breach during a large flood would result in a small increase in water levels, attributable to the dam failure, in the downstream areas of permanent population. Recognizing the flooding in those areas, and from application of the " 2×2 Rule" promoted by the 2011 LRIA associated bulletins, the dam was assigned an HPC of HIGH for a breach during a flood. Through incremental analysis the $100-Y e a r$ Flood was proposed as IDF, because larger flood events would only cause a small increase in water levels (10 cm or less) in areas of hazard to population.

The analysis indicated that the dam could adequately pass the IDF (100-Year Flood with a peak flow of $415 \mathrm{~m} 3 / \mathrm{s}$) with all the bays open, and provide adequate freeboard. It requires, however, that provisions are taken to ensure that the sluiceway bays can be opened in advance of a flood. The analysis of energy dissipation downstream of the dam suggests that the conditions are adequate; but these need to be confirmed at the time of design of dam upgrades. This confirmation should include a more detailed determination of the tailwater rating curve than what was available during the study. It must be noted that previous studies have identified concerns with the management of ice and debris affecting spill capacity, as well as scour on the banks and downstream of the dam. These need to be also considered during the design of potential dam upgrades.

As part of the assessment, KGS Group engineers carried out a visual inspection of the structures and a reconnaissance of the site and surrounding area. A concrete coring program was carried out during the structural assessment of the dam (refer to 2018 Geotechnical Site Investigation Report by KGS Group). Three vertical core holes were completed from the top of the piers to depths between 1.6 and 1.9 m . The concrete in the cores was observed to be extensively deteriorated with fractures present throughout the core length. In those conditions, the load-carrying capacity and the water tightness of the concrete are expected to be significantly reduced.

The visual inspection revealed that the South Dam at the site is in very poor condition. Large areas of freeze/thaw spalling and delamination were visible in the concrete overflow weirs, piers and abutments. If the concrete condition within the body of the overflow weirs is similar to the concrete obtained from the core logs from the piers, it would mean that the integrity of the
concrete in the weir may no longer be reliable and that the South Dam is required to be repaired as soon as possible.

The bridge deck is a reinforced concrete beam structure but a large portion of the reinforcing steel is exposed and corroded. Due to the corroded reinforcing steel, and potential horizontal fractures and extensive deterioration within the concrete at the girders and deck, the structural capacity of the girders and deck is compromised. Moreover, it is not possible to reasonably estimate the load-carrying capacity of the girders/ deck slabs based on the deteriorated concrete condition. Although an analysis of the bridge or its members was not within the scope and has not been conducted, the observations from the site visit suggest that the further use of the bridge may pose a risk to the public and that the safety of the bridge should be addressed.

The dam appears to be founded on soil, based on the report of the B.M. Ross and Associates Ltd. There have been undermining issues that have required repairs at different times during the life of the structure. As such, the foundation condition and potential scouring and undermining need to be assessed as part of any future alternatives for the dam.

The structural stability analyses for the South Dam were carried out in accordance with the criteria indicated in the 2011 LRIA associated bulletins. KGS Group computed stability factors for the six load-combination cases specified in 2011 LRIA:

- Load Case One: with maximum normal operation water level in summer.
- Load Case Two: winter operation water level plus "usual" ice loading condition.
- Load Case Three: flood condition (IDF).
- Load Case Four: winter operation water level plus "unusual" ice loading condition.
- Load Case Five: earthquake condition, and
- Load Case Six: post-earthquake condition.

Note that for the stability assessment, the concrete of the piers and weir was assumed to be intact.

The results of the stability analyses show that the piers under current condition (with the bridge deck) meet the 2011 LRIA stability criteria for all loading conditions. For the case with the bridge deck removed, the results of the stability analyses show that the piers do not meet the 2011 LRIA stability criteria for the sliding stability under normal summer, winter, IDF and earthquake loading conditions.

The results of stability analyses show that the overflow weirs of the South Dam do not meet the 2011 LRIA stability criteria for the sliding stability under all loading conditions except the IDF.

Under the current dam operation condition, the results of stability analyses show that the entire South Dam does not meet the 2011 LRIA stability criteria for the sliding stability under all loading conditions except the IDF and post-earthquake loadings.

It was concluded that the dam does not meet the 2011 LRIA sliding stability criteria. Remedial work is required to address the dam stability deficiency, required for the application to obtain approval from MNRF under Section 16 of the LRIA.

The following alternatives for addressing the stability deficiency of the South Dam at the Howson Dam were evaluated:

- Do nothing
- Dam Decommissioning
- Dam Rehabilitation
- Dam Replacement

For these alternatives, American Association of Cost Engineering (AACE) Class 4 estimates, with an accuracy of plus or minus 40 to 50%, were obtained and are provided in subsequent paragraphs.

The do nothing alternative was considered not feasible because it would not address the risk posed by the dam, since it does not satisfy the dam safety requirements indicated in the 2011 LRIA associated criteria for stability. The do nothing alternative also does not address the risk posed by the bridge at its present state of deterioration.

The alternative of dam decommissioning was not ruled unfeasible; but it would require an extensive process of consultation at various levels. It is anticipated, based on the input obtained during the 2016 EA, that it could be opposed by the public. A cost estimate of $\$ 436,000$ was obtained for this option. This estimate does not include some costs that might be related to environmental controls and management of fish population or fish habitat. There are also considerations such as effect on species at risk and on the character of the area and public use of the site for which a monetary value is difficult to assign.

For the alternative of dam rehabilitation, two options were considered: installation of posttension anchors and addition of concrete mass. Both options need to be confirmed with site investigations to assess the condition of the concrete in the weirs and of the foundation of the dam. The information available from the visual inspection and limited core sampling suggests that these options will likely be found not feasible after these site investigations are carried out. Nonetheless, a cost estimate was prepared assuming that the concrete in the weirs would be found to be sound and would only need removal of damaged concrete up to 0.5 m of depth from the surface. The cost estimate also was based on the assumption of a competent dam foundation. The rehabilitation options, if feasible, would ensure that the South Dam satisfies the stability requirements of the LRIA. The rehabilitated dam, in conjunction with the North Dam would allow safe passage of the IDF in accordance with the requirements by the LRIA. The estimated costs of the two rehabilitation options are:

- Installation of post-tensioned anchors at the overflow weirs: \$ 2,869,000
- Addition of concrete mass to the overflow weirs: \$4,581,000.

Additional evaluation is necessary to assess the structural stability of the North Dam. It is possible that, as the result of this assessment, the North Dam also requires rehabilitation works to satisfy the LRIA, which have not been included in the cost estimates presented above.

Two options were considered for rebuilding the dam: concrete weir and earth embankment with an additional sluiceway structure. These options would allow satisfying the requirements of the LRIA. As in the case of the rehabilitation alternative, the rebuilt dam would require the spill capacity from the North Dam to safely pass the IDF. The stability of the North Dam would need to be assessed and it could potentially need rehabilitation works to ensure that this dam also satisfies the requirement of the LRIA. The estimated costs of the two rebuilt options are:

- New concrete overflow weir \$ 6,209,000
- Earth embankment and new sluiceway structure: \$3,960,000.

Further consideration of these alternatives is required, including public consultation. It is recommended that these are included in the EA process initiated in 2016. A more detailed investigation program to determine the concrete condition of the overflow weir and its foundation condition are recommended prior to selecting the preferred alternative. These investigations and analyses will be required to confirm the feasibility of any of the rehabilitation options.

TABLE OF CONTENTS

EXECUTIVE SUMMARY I
1.0 INTRODUCTION 8
2.0 BACKGROUND INFORMATION. 10
2.1 GENERAL 10
3.0 INSPECTION AND DEFICIENCIES 12
3.1 RECORD OF OBSERVATIONS 12
3.2 DAM STRUCTURE CONDITION ASSESSMENT 12
3.2.1 General 12
3.2.2 Field Inspection Conclusions 18
4.0 STRUCTURAL ANALYSIS 19
4.1 GENERAL 19
4.2 GENERAL PARAMETERS 19
4.3 LOADING 20
4.3.1 Earthquake 20
4.3.2 Ice 21
4.3.3 Water Pressure 21
4.3.4 Force Due to Passive Rock Wedge 22
4.4 ACCEPTANCE CRITERIA 22
4.5 RESULTS OF STABILITY ANALYSIS 22
4.5.1 Dam Stability Calculations including Bridge Deck 24
4.5.2 Dam Stability Calculations Assuming the Bridge Deck to be Removed 28
4.6 DISCUSSION OF RESULTS 31
4.6.1 Piers 31
4.6.2 Overflow Weirs 31
4.6.3 Entire Dam - Combination of Piers and Overflow Weirs 31
5.0 ALTERNATIVES TO THE PROJECT 32
5.1 DO NOTHING 33
5.2 DAM DECOMMISSIONING 33
5.3 DAM REHABILITATION 34
5.4 DAM REPLACEMENT 37
6.0 CONCLUSIONS AND RECOMMENDATIONS 38
7.0 STATEMENT OF LIMITATIONS 40
7.1 THIRD PARTY USE OF REPORT 40
8.0 REFERENCE 41
TABLESFIGURESAPPENDICES

LIST OF TABLES

Table 4.2-1 General Parameters Used for Analyses
Table 4.3-1 Stability Performance Factors
Table 4.5-1 Pier and Rollway Loading Data
Table 4.5-2 Results of Stability Analysis - Pier Including Bridge Deck
Table 4.5-3 Results of Stability Analysis - Overflow Weir
Table 4.5-4 Results of Stability Analysis - Entire Dam Including Bridge Deck
Table 4.5-5 Results of Stability Analysis - Pier (For Bridge Deck Removed)
Table 4.5-6 Results of Stability Analysis - Entire Dam (For Bridge Deck Removed)

LIST OF FIGURES

Figure 1-1 General Location of the Howson Dam (Google Maps Image)

LIST OF APPENDICES

A. Construction Drawings
B. Calculations
C. Dam Safety General Inspection (DSGI) Sheets
D. Cost Estimate Alternatives

1.0 INTRODUCTION

The Howson Dam, located north of Highway 86 in the Township of North Huron, was built in approximately 1920 (South Section) and 1966 (North Section). The dam is located on the North Branch of the Maitland River (North Maitland River) and was originally built to prevent flooding and to create a reservoir for recreational use. Water levels at the reservoir are managed by operating stop-log sluices in the north section of the dam.

The Township of North Huron retained KGS Group to carry out a design services for the stability assessment on the South Dam of the Howson Dam. The stability assessment is one component of a dam safety management system which is developed in order to ensure safe management of the dam throughout its life cycle. The scope of work for this project includes the assessment of the stability of the South Dam considering two conditions: with and without the bridge at the site in place. It must be noted that the scope does not include an assessment of the condition of the bridge or analyses of its strength and stability.

As part of the assessment, KGS Group engineers carried out a visual inspection of the structures, features of geological significance, flow control equipment, and the hydrology of the site and surrounding area.

This report presents the findings and results of stability assessment on the South Dam and provides recommendations.

The dam stability assessment has been completed by KGS Group in accordance with the requirements of the MNRF 2011 Lakes and Rivers Improvement Act Dam Safety Technical Bulletins (hereafter referred to as 2011 LRIA).

The South Dam is approximately 54 m long, 6.5 m high and has four sluice bays, each with a sill level at approximately El. 309.25 m . This elevation was obtained from the document "Proposed Repairs to the Howson Dam" prepared by BM Ross and Associates Limited in 2015 (BM Ross 2015). The top elevation of the deck of the structure is at El. 312.48 m (geodetic elevation provided by the Township of North Huron). A structure inspection report prepared by BM Ross and Associated Limited in 2013 - Report No. 010 (BM Ross 2013a) indicates that the four bays, from north to south, were $10.6 \mathrm{~m}, 11.5 \mathrm{~m}, 10.8 \mathrm{~m}$, and 10.7 m in length.

Figure 1-1 shows the location of the Howson Dam

FIGURE 1-1
GENERAL LOCATION OF THE HOWSON DAM (GOOGLE MAPS IMAGE)

2.0 BACKGROUND INFORMATION

2.1 GENERAL

In the report submitted in May 1965 by Crysler, Davis \& Jorgensen Ltd. Consulting Engineers, it was indicated that the ogee section of the sluiceway (South Dam) was spalled and spalling was observed in all piers, too, but they appeared to be structurally sound.

The deteriorated concrete condition of the south dam was further reported by B.M Ross and Associates including the inspection results and report carried out by Atkinson Davies Inc in December 1984. Nine concrete core samples were taken from superstructure and substructure of south sluiceway by Atkinson Davies. Given the conditions of the concrete, negligible or zero concrete compression strength was noted in the report of Atkinson Davies inc. Severe delaminated /spalled concrete areas were identified in the report of B.M Ross and Associates for both of the bridge and the south dam. Consequently, a 3-tonne live load limit on the bridge was proposed by B.M Ross and Associates. The reports also discussed alternatives of remedial measures to the structure, that were developed by B.M Ross and Associates in October 1985. These alternatives corresponded to options for reconstructing the dam.

A document provided by the Township of North Huron, referring to the 2013 Asset Management Plan and the status of the Howson Dam project indicates that the bridge over the dam was closed to vehicular traffic, approximately since 1999. The document refers to the poor condition of the dam and the previous recommendations for repairs. It mentions that the MNRF has suggested the potential need for application under Section 16 of the LRIA, before approval of the dam repairs. The document also discuss the head pond levels and the fact that flashboards cannot be installed in the present conditions, and mentions discussions that have taken place regarding hydro generation potential at the site.

The Township also provided correspondence from BM Ross Engineering that refer to a revised plan of the repairs to the dam. The letter refers to a cost of approximately $\$ 485,000$ plus HST for re-facing and restoration of the upstream concrete sill and patch restoration on the piers. The letter does not provide details but refer to reports issued in 2015. These were not available for review. The letter does indicate that stability analyses had not been completed for the structure. Subsequent to this letter, there were other communications with MNRF and with BM Ross. In
those it is suggested that the proposed works might exceed MNRF's definition of "minor works" and, therefore, require approval under the LRIA.

3.0 INSPECTION AND DEFICIENCIES

3.1 RECORD OF OBSERVATIONS

As part of this dam stability assessment, KGS Group engineers carried out a visual inspection of the south dam on November 22, 2017. The weather was sunny to partly cloudy, and the temperature was about $3^{\circ} \mathrm{C}$. Photographic records of the inspection were made.

The detailed structural and geotechnical observations were recorded on Dam Safety General Inspection (DSGI) sheets provided in Appendix C.

3.2 DAM STRUCTURE CONDITION ASSESSMENT

3.2.1 General

The South Dam is made up of concrete overflow weirs and piers/abutments. A bridge deck is supported on the top of the piers/abutments. The various elements of the inspected structures are described below.

3.2.1.1 Concrete Overflow Weir

The concrete overflow weir is a concrete mass structure and is in poor to very poor condition. Large area of freeze/thaw spalling/erosion are found at upstream face, top and downstream side of the structure as shown in photos Photo 3.2.1 and Photo 3.2.2.

PHOTO 3.2.1

UPSTREAM VIEW OF OVERFLOW WEIR

PHOTO 3.2.2
TOP AND DOWNSTREAM VIEW OF OVERFLOW WEIR

3.2.1.2 Piers / Abutments

The piers/abutments are concrete mass structures and are in very poor condition. The pier noses were found to have large spalled concrete as shown in photo 3.2.3. The side face of the pier shows severe spalling / delamination (see photo 3.2.4). As shown in photo 3.2.5, the downstream sides of the piers are cracked. Large spalled concrete is also found at the abutments (see photo 3.2.6).

PHOTO 3.2.3
SPALLLED PIER NOSE

PHOTO 3.2.4

VIEW OF PIER SIDE FACE

PHOTO 3.2.5
VIEW OF PIER DOWMSTREAM SIDE

PHOTO 3.2.6 VIEW OF ABUTMENTS

3.2.1.3 Bridge Deck

The bridge deck consists of deck slab and concrete girders. They are structural beam elements and are in very poor condition. The concrete deck has leakage and exposed corroded reinforcing bars. The bottom reinforce bars of the girders are largely exposed and severely corroded. The girders also show large areas of spalling concrete. (See Photo 3.2.7 and Photo 3.2.8).

PHOTO 3.2.7

BOTTOM VIEW OF THE BRIDGE DECK AND GIRDERS

PHOTO 3.2.8
EXCESSIVE REBAR CORROSION AT GIRDERS

3.2.2 Field Inspection Conclusions

A concrete coring program was carried during the structural assessment of the dam (refer to 2018 Geotechnical Site Investigation Report by KGS Group). The core logs of the concrete at the top of piers indicate that the concrete is extensively deteriorated with horizontal fractures present throughout the core length. Therefore, the load-carrying capacity and the water tightness of the concrete are expected to be significantly reduced.

Based on the visual inspection, the south dam is in very poor condition. Large areas of freeze/thaw spalling and delamination are identified for concrete overflow weirs, piers and abutments. If the concrete condition within the body of the overflow weirs is similar to the concrete obtained from core logs, the integrity of the concrete dam may no more reliable. Therefore, the south dam is required to be repaired as soon as possible.

The bridge deck is a reinforced concrete beam structure and its strength is relied on the reinforced bars and the concrete. Since the reinforced bars for the girders are largely exposed to weather and experienced severe corrosion, the strength reduction of the reinforced bars is expected. Due to the potential horizontal fractures and extensively deterioration within the concrete at the girders and decks, the structural capacity of the girders and decks is compromised. Moreover, it is not possible reasonably to estimate the load-carrying capacity of the girders/ deck slabs based on the deteriorated concrete condition. Although an analysis of the bridge or its members has not been conducted, the observations from the site visit suggest that the further use of the bridge may pose a risk to the public. The safety of the bridge should be addressed.

The dam appears to be founded on the soil, based on the report of the B.M. Ross and Associates. Since the downstream apron and its cut-off wall was not visible during the presence of water, the condition of potential scour and undermining at the downstream of the overflow weir is unknown.

4.0 STRUCTURAL ANALYSIS

4.1 GENERAL

Assuming the concrete is intact for the south dam; calculations to check the stability of the south dam have been performed. The stability assessment of the south dam is based on the following:

- Drawings provided by the Township of North Huron. The drawings are listed in Appendix A.
- Field measurements taken as part of this dam safety assessment.
- Howson Dam - 2018 Geotechnical Site Investigation Report, KGS Group.
- Howson Dam - 2017 Dam Safety Assessment Report, KGS Group.

The structures were analyzed based on the 2011 LRIA Technical Bulletin "Structural Design and Factors of Safety". KGS Group assessed the stability of the structures, and compared the results to the LRIA acceptance criteria. The structural sections examined were as follows:

- Overflow Weirs
- Piers with Bridge Deck
- Piers without Bridge Deck (Assuming The Bridge Deck Is Removed).

The stability of the structures was calculated using the "gravity method". By this method, the dam is assumed to be a two dimensional rigid block. All loads are carried by gravity to the underlying soil, and the foundation pressure distribution is assumed linear. This is also known as rigid body analysis. The stability analysis was assessed at the concrete/soil interface, which is typically the weakest plane of failure.

4.2 GENERAL PARAMETERS

The load parameters and acceptance criteria for the stability assessment were based on 2011 LRIA. KGS Group used stability parameters with no cohesion based on the 2011 LRIA, our previous experience and overall industry practice. As per 2011 LRIA, "usual", "unusual", "earthquake" and "post-earthquake" loading combinations were analyzed.

The major parameters used for the dam stability analyses are provided in the following Table 4.2-1.

TABLE 4.2-1
GENERAL PARAMETERS USED FOR ANALYSES ${ }^{11}$

INCREMENTAL CONSEQUENCE CATEGORY	HIGH
Water Unit Weight	$9.81 \mathrm{kN} / \mathrm{m}^{3}$
Friction Angle at Concrete to Soil Interface	23°
Cohesion at Concrete to Soil Interface	0.0 kPa
Concrete Unit Weight (assumed)	$23.5 \mathrm{kN} / \mathrm{m}^{3}$
Concrete Compressive Strength	23 MPa
Factored Foundation Bearing Capacity at Service Limit State (SLS)	300 kPa.

${ }^{1 /}$ Material properties and shear strength parameters were estimated based on the original drawings and background information.

The south dam is founded on the native sandy silt to silty sand till. The recommended lower bound shear strength parameters at the interface concrete / soil is 23° internal friction angle with zero (0) cohesion.

The test results of the limited solid concrete cylinders show the compressive strength of the concrete to be 23 MPa .

4.3 LOADING

4.3.1 Earthquake

Since the Hazard Classification for the Howson Dam is HIGH, the Design Basis Earthquake (DBE) should have a probability of annual exceedance of 1 in 2,500 years for this dam as specified in Table 1 of the 2011 LRIA Technical Bulletin "Seismic Hazards". The horizontal Peak Ground Acceleration (PGA) is estimated to be $8.34 \% \mathrm{~g}$ based on the 2015 National Building Code Seismic Hazard calculations provided by the National Research Council (NRC).

Pseudo-Static Analysis (Seismic Coefficient) was performed by using a seismic coefficient equal to the PGA expressed as a fraction of gravity in accordance with 2011 LRIA. Earthquakeinduced horizontal and vertical inertia forces were simultaneously taken into account for the stability analysis of the concrete structures. The vertical seismic coefficient is scaled from the
horizontal seismic coefficient using a scaling factor in the range of $1 / 2$ to $2 / 3$. Two thirds of the horizontal seismic coefficient was assumed for the vertical seismic coefficient in the calculations. The earthquake-induced hydrodynamic pressure of the reservoir was also considered in the analysis for the spillway and pier. For analysis of the retaining walls, the Mononobe-Okabe formula was used to determine the increase in earth pressure from the backfill.

4.3.2 Ice

The approach to determine the thermal ice load must consider site-specific characteristics and operating information.

For the usual load combination, a load of $75 \mathrm{kN} / \mathrm{m}$ was used. An unusual ice load of $83.5 \mathrm{kN} / \mathrm{m}$ was estimated for the stability analysis based on the database of the Centre for Energy Advancement through Technological Innovation. (CEATI). For the stability analyses, the ice load was considered to act at 305 mm below the maximum winter operating water level water level.

4.3.3 Water Pressure

The dam is required to resist the maximum normal operating headwater levels for summer and winter. Since there are no data recorded for the historical water levels at the headpond, the maximum summer normal operating water level is estimated to be 310.9 m based on the rating curve. This water level is corresponding to an annual exceedance probability of 10% (recommended by the 2011 LIRA). The winter water level is take at 310.26 m which equals to the top elevation of the overflow weir. The associated assumed tailwater level at the toe of the dam is dry. The estimated IDF water level is at an elevation of 311.9 m (refer to 2017 Dam Safety Assessment Report, KGS Group) for the headwater level and the associated tailwater level at the toe of dams is 310.3 m .

Full uplift, varying linearly from 100\% headwater pressure at the upstream face to 100% tailwater pressure at the downstream face, was assumed. Once a cracked plane was determined based on the calculations, crack analysis was performed. The modified uplift was assumed to be full headwater pressure over the length of the crack, varying as a straight line
from full headwater pressure at the end of the crack to full tailwater pressure at the toe. The stress distribution and shear-friction safety factor was calculated along the uncracked portion.

4.3.4 Force Due to Passive Rock Wedge

The dam base appears keyed into the soil as shown on the reference drawings provided in Appendix A. However, the sliding capacity of the possible passive wedge downstream of the key was not taking into account for the dam stability calculations. This is because the calculated passive pressure of the wedge is insignificant by using its gravitational sliding friction resistance in the absence of the cohesion. Note that the cohesion value of the soil cannot be confirmed based on available data.

4.4 ACCEPTANCE CRITERIA

For dam structures with cohesion assumed to be zero, 2011 LRIA outlines the following performance factors summarized in the Table 4.3-1.

TABLE 4.3-1
STABILITY PERFORMANCE FACTORS

LOADING CASE	LOAD COMBINATION			
	USUAL (Summer / Winter)	UNUSUAL (IDF)	EARTHQUAKE	POST- EARTHQUAKE
Sliding Stability Factor (SSF)	1.5	1.3	1.1	1.1
Location of the Resultant	Within Middle- third	Within Base	May be outside base	May be outside base

${ }^{11}$ For existing dams, it may be acceptable to allow a small percentage of the base to not be in compression if all other performance factors, including the sliding factor of safety, are met and the resultant is within the base of the dam and allowable bearing stresses are not exceeded.

4.5 RESULTS OF STABILITY ANALYSIS

KGS Group has computed stability factors for the six load-combination cases specified in 2011 LRIA. Table 4.5-1 shows the six load cases that were considered for the stability analyses of the
pier and rollway sections individually and for the entire dam as sensitivity analysis. Load Case One is related to the maximum normal operation water level in summer. Load Case Two represents the winter operation water level plus the usual ice loading condition. Load Case Three is for the flood condition (IDF). Load Case Four is the winter operation water level plus the unusual ice loading condition. Load Cases Five and Six are the loading cases for earthquake and post-earthquake condition, respectively.

The stability calculations for the piers were performed with the weight of the bridge deck. However, taking consideration of the potential removal of the existing bridge deck, the pier stability was also assessed without using the weight of the bridge deck. Since the original drawings don't provide the conclusive information for the connections between the piers and overflow weirs, KGS Group performed stability analyses for the individual sections of the weirs and piers as base case. In other words, it was assumed the each weir and pier worked independently to resist the applicable loads. In addition, sensitivity analyses were performed for the entire dam assuming that the piers and weirs worked together. Tables 4.5-2 through 4.5-6 show the summary of the results of the stability analyses. Detailed calculations are provided in Appendix B.

TABLE 4.5-1
PIER AND ROLLWAY LOADING DATA

\multirow{2}{*}{ DATA TYPE }	LOADING CASES						
	USUAL		UNUSUAL		EXTREME		
	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	
Head Water Level (H.W.L) (m)	310.9	309.26	311.90	309.26	310.9	310.9	
Tail Water Level (T.W.L) (m)	0	0	310.30	0	0	0	
Ice Load (kN/m)	---	75.0	---	83.5	---	---	
Seismic Coefficient (horizontal)	---	---	---	---	$8.34 \% \mathrm{~g}$	---	
Drag Force	---	---	---	---	---	---	
Uplift	Full\|		Full	Full	Full	Full	Full

Legend:
Case 1: Summer Normal Maximum Operating Water Level
Case 2: Winter Normal Maximum Operating Water Level plus Usual Ice
Case 3: Inflow Design Flood (IDF)
Case 4: Winter Normal Maximum Operating Water Level plus Unusual Ice
Case 5: Earthquake Loads in Conjunction with Usual Loading Case 1
Case 6: Post-Earthquake to Consider Modified Uplift Pressures Applied to the Cracked Section

4.5.1 Dam Stability Calculations including Bridge Deck

Table 4.5-2 and Table 4.5-3 show the summary of the results of the base case stability analyses for the pier and overflow weir including the bridge deck in place. Table $4.5-4$ shows the results of sensitivity analysis for the entire dam by the combination of the pier and the weir.

TABLE 4.5-2
RESULTS OF STABILITY ANALYSIS - PIER INCLUDING BRIDGE DECK

TABLE 4.5-3
RESULTS OF STABILITY ANALYSIS - OVERFLOW WEIR

LOADING CASE		USUAL		UNUSUAL		EXTREME	
		Case 1 (Summer Normal Water Level)	Case 2 (Winter Normal Water Level + Usual Ice)	Case 3 (IDF)	Case 4 (Winter Normal Water Level + Unusual Ice)	Case 5 (Normal Water Level plus EQ)	Case 6 (Post EQ Condition)
Sliding Stability Factor (SSF)	LRIA Required	1.5	1.5	1.3	1.3	1.1	1.1
	Computed	0.85	0.57	1.31	0.53	0.59	0.85
Location of the Resultant	LRIA Required	Within MidThird	Within MidThird	Within Base	Within Base	Outside Base	Outside Base
	Computed	Within MidThird	Within MidThird	Within Base	Within Base	Within Base	Within Base
Location of the Resultant from Toe 'a' (m)		3.0	2.3	3.5	2.1	2.6	3.0
Maximum bearing stress(kPa)	Required	300	300	300	300	300	300
	Computed	35	48	34	52	43	35
Height of Section = Base Length of Section = Compressive Strength of Concrete f'c = Tensile Strength of Concrete / Rock = Internal Friction Angle Concrete $/$ Rock $=$ Cohesion Concrete / Rock, c = Uplift =		$\begin{aligned} & 3.20 \mathrm{~m} \\ & 6.20 \mathrm{~m} \\ & 20 \mathrm{MPa} \\ & 0.0 \mathrm{MPa} \\ & 23^{\circ} \\ & 0.0 \mathrm{kPa} \end{aligned}$ Varies linearly 100\% tailwat	from 100\% h pressure.	adwater pres	ure to		

TABLE 4.5-4
RESULTS OF STABILITY ANALYSIS - ENTIRE DAM INCLUDING BRIDGE DECK

LOADING CASE		USUAL		UNUSUAL		EXTREME	
		Case 1 (Summer Normal Water Level)	Case 2 (Winter Normal Water Level + Usual Ice)	Case 3 (IDF)	Case 4 (Winter Normal Water Level + Unusual Ice)	Case 5 (Normal Water Level plus EQ)	Case 6 (Post EQ Condition)
Sliding Stability Factor (SSF)	LRIA Required	1.5	1.5	1.3	1.3	1.1	1.1
	Computed	1.29	1.02	1.76	0.95	0.85	1.29
Location of the Resultant	LRIA Required	Within MidThird	Within MidThird	Within Base	Within Base	Outside Base	Outside Base
	Computed	Within MidThird	Within MidThird	Within Base	Within Base	Within Base	Within Base
Location of the Resultant from Toe 'a' (m)		3.2	2.9	3.4	2.8	2.7	3.2
Maximum bearing stress(kPa)	Required	300	300	300	300	300	300
	Computed	65	74	44	78	79	65
Height of Section = Base Length of Section = Compressive Strength of Concrete f'c = Tensile Strength of Concrete / Rock = Internal Friction Angle Concrete $/$ Rock $=$ Cohesion Concrete / Rock, c = Uplift =		$\begin{aligned} & 5.67 \mathrm{~m} \\ & 7.95 \mathrm{~m} \\ & 20 \mathrm{MPa} \\ & 0.0 \mathrm{MPa} \\ & 23^{\circ} \\ & 0.0 \mathrm{kPa} \end{aligned}$ Varies linearly from 100\% headwater pressure to 100\% tailwater pressure.					

4.5.2 Dam Stability Calculations Assuming the Bridge Deck to be Removed

Table 4.5-2 and Table 4.5-3 show the summary of the results of the base case stability analyses for the pier and overflow weir including the bridge deck in place. Table $4.5-4$ shows the results of the sensitivity analysis for the entire dam by the combination of the pier and the weir

TABLE 4.5-5
RESULTS OF STABILITY ANALYSIS - PIER (FOR BRIDGE DECK REMOVED)

TABLE 4.5-6
RESULTS OF STABILITY ANALYSIS - ENTIRE DAM (FOR BRIDGE DECK REMOVED)

LOADING CASE		USUAL		UNUSUAL		EXTREME	
		Case 1 (Summer Normal Water Level)	Case 2 (Winter Normal Water Level + Usual Ice)	Case 3 (IDF)	Case 4 (Winter Normal Water Level + Unusual Ice)	Case 5 (Normal Water Level plus EQ)	Case 6 (Post EQ Condition)
Sliding Stability Factor (SSF)	LRIA Required	1.5	1.5	1.3	1.3	1.1	1.1
	Computed	0.99	0.77	1.25	0.72	0.68	0.98
Location of the Resultant	LRIA Required	Within MidThird	Within MidThird	Within Base	Within Base	Outside Base	Outside Base
	Computed	Within MidThird	Within MidThird	Within Base	Within Base	Within Base	Within Base
Location of the Resultant from Toe 'a' (m)		3.0	2.5	3.2	2.4	2.5	3.0
Maximum bearing stress(kPa)	Required	300	300	300	300	300	300
	Computed	58	67	36	71	66	58
Height of Section = Base Length of Section = Compressive Strength of Concrete f'c = Tensile Strength of Concrete / Rock = Internal Friction Angle Concrete $/$ Rock $=$ Cohesion Concrete / Rock, c = Uplift =		$\begin{aligned} & 5.67 \mathrm{~m} \\ & 7.95 \mathrm{~m} \\ & 20 \mathrm{MPa} \\ & 0.0 \mathrm{MPa} \\ & 23^{\circ} \\ & 0.0 \mathrm{kPa} \\ & \text { Varies linearly from 100\% headwater pressure to } \\ & 100 \% \text { tailwater pressure. } \end{aligned}$					

4.6 DISCUSSION OF RESULTS

4.6.1 Piers

The results of stability analyses show that the piers under current dam operation condition meet the 2011 LRIA stability criteria for the sliding stability under all loading conditions. Note that for the assessment the concrete of the piers was assumed to be intact.

For the case with the bridge deck removed, the results of the stability analyses show that the piers do not meet the 2011 LRIA stability criteria for the sliding stability under normal summer, winter, IDF and earthquake loading conditions.

4.6.2 Overflow Weirs

The results of stability analyses show that the weirs do not meet the 2011 LRIA stability criteria for the sliding stability under all loading conditions except the IDF.

4.6.3 Entire Dam - Combination of Piers and Overflow Weirs

Under current dam operation condition, the results of stability analyses show that the entire dam does not meet the 2011 LRIA stability criteria for the sliding stability under all loading conditions except the IDF and post-earthquake loadings.

5.0 ALTERNATIVES TO THE PROJECT

KGS Group conducted a Dam Safety Assessment for the Howson Dam (KGS Group, 2017) and concluded that, in accordance with the 2011 LRIA, the Hazard Potential Classification (HPC) for the dam corresponds to the category of HIGH. This was based on the evaluation of incremental consequences of a dam breach, and applied to both normal or "sunny-day" conditions and flood conditions. The Dam Safety Assessment concluded that the Inflow Design Flood (IDF) for the dam should be the 100-Year Flood, since a breach during a greater flood would not pose significant additional threat to lives, property or environmental or cultural assets. The corresponding peak flow of the IDF is $415 \mathrm{~m}^{3} / \mathrm{s}$, and it could be safely passed through the dam in its present condition. However, the stability analysis documented in this report indicates that the dam does not meet the 2011 LRIA sliding stability criteria, and that remedial work would be required to address the dam stability deficiency, required for the application to obtain approval from MNRF under Section 16 of the LRIA.

Two aspects have not been included in the assessment and would need to be considered, depending on the alternative selected. The first one is the stability of the sluiceway structure that constitutes the North Dam. This was not investigated as part of the scope of this study, and would need to be evaluated as this structure is part of some of the alternatives discussed in this section. The second aspect is the stability of the earth embankment between the North Dam and the South Dam. Depending on the alternative selected, if this embankment is part of the preferred solution, its stability would need to be evaluated. An allowance to cover those costs have been included in those cases.

The alternatives evaluated to address the stability deficiency of the South Dam at the Howson Dam are the following:

- Do nothing
- Dam Decommissioning
- Dam Rehabilitation
- Dam Replacement.

Considerations and cost estimates for each of these alternatives are presented in the following sections. These are based on the information available for the site and costs of similar projects. These cost estimates correspond to American Association of Cost Engineering (AACE) Class 4
estimates, with an accuracy of plus or minus 40 to 50%. The feasibility and costs of these alternatives should be confirmed with further studies.

5.1 DO NOTHING

This alternative consists of continuing with the status quo, allowing the structure to continue to deteriorate. The Do Nothing alternative is not considered feasible, as the existing dam does not meet current standards and deficiencies have been identified which need to be addressed. Furthermore, the bridge at the site, although not specifically evaluated as part of this project, shows major signs of deterioration. It is the opinion of KGS Group that the further use of the bridge may pose a risk to the public and that the safety of the bridge should be addressed.

5.2 DAM DECOMMISSIONING

This alternative involves the demolition and removal of the dam structure or part of it, including the bridge deck, and draining the reservoir. Any components of the dam left in place would need to be in a condition that do not pose further risk or require maintenance.

This alternative would require studies, consultations, approvals and permits, including an Environmental Assessment (EA) and approval under Section 16 of the LRIA. It is expected that this option would not be favored by the public, since the EA conducted in 2016 demonstrated that there is strong support from the public for the rehabilitating or repairing the dam. However, it must be noted that the options presented at the time of the 2016 EA did not consider the findings that the stability assessment subsequently revealed.

The decommission alternative would address the deficiencies identified in the structural stability analysis of the dam, and would remove the perceived risk posed by the bridge; but it would also have significant effect on the character of the area and the use of the reservoir by the community. The reservoir would be lost and the exposed area as well as the shoreline would need to be restored. Its aesthetic and recreational importance would need to be considered as part of the evaluation of this alternative.

The removal of the dam would include demolition, river flow diversion and sediment management. An estimate of these construction costs is included in Appendix D. Additional
costs, such as design, engineering and permitting, administration and contingency, which have been estimated as a percentage of the construction cost, are also included in Appendix D . The total estimated cost for this alternative is $\$ 436,000$. It is estimated that the demolition work would have a duration of 6 months.

The dam decommissioning would require management and monitoring of sediment, to ensure that the sediment is not mobilized and transported to downstream reaches. It would also have environmental effects that need to be evaluated and for which it can be difficult to assign a monetary value. The Township of North Huron has noted that the EA identified two species at risk in the areas upstream and downstream of the dam. This alternative would require follow up monitoring and adaptive management of the area of influence of the dam. It would also require permits and approvals from federal and provincial government agencies. There could be requirements issued by the Department of Fisheries and Oceans (DFO) as part of their review and/or authorization process, which could include water and sediment management, considerations for disposal of material, work restrictions for areas and timing of the works, fish salvage operations, management of fish habitat.

The decision to proceed with this alternative would require careful examination of the multiple aspects described above and would involve an EA process.

5.3 DAM REHABILITATION

This alternative involves applying remedial measures to the dam to establish structural integrity and provide for the safe operation and passage of flows up to and including the IDF.

Two options were considered for the dam rehabilitation alternative:

1. Installation of post-tensioned anchors at the overflow weirs
2. Addition of concrete mass to the overflow weirs.

The feasibility of any of these options requires that the concrete in the overflow weirs be in sound condition and that the foundation of the dam is compact and with no leakage. The compliance with these two requirements could not be confirmed or refuted with the information available for this study. The external signs and appearance of the concrete and the limited
concrete core samples obtained on the piers, as part of this study, suggest that it is likely that the condition of the concrete in the weirs will not be adequate for the rehabilitation options. That, however, would need confirmation with core samples taken on the weirs. Likewise, the type of foundation and the overall condition at the site suggest that the dam foundation might not be completely sound, since there are reports of previous undermining issues being addressed on both the North Dam and the South Dam; but that needs to be confirmed. If those concerns are confirmed, and the dam is in such a state that it is beyond repair, the rehabilitation alternative would not be feasible as it would essentially become a rebuild or replacement of the dam.

For the purpose of estimating a cost for the rehabilitation options, it has been assumed that the foundation is adequate and that the concrete core of the weirs is sound, and only requires removal and replacement of the concrete surface up to a 0.5 m depth. Site investigations, on the weir concrete and the dam foundation, beyond those conducted in this study, are required to confirm the viability of the two potential rehabilitation options. These site investigations have been included in the cost estimate for this alternative.

Another element included in both options for the rehabilitation alternative, and in the corresponding cost estimates, is the removal of the bridge deck and the upper portion of the piers. KGS Group is of the opinion that the bridge in its present condition would be a safety hazard for the works included in the rehabilitation alternative.

In both options for the dam rehabilitation alternative, the North Dam is maintained, to provide spill capacity. This capacity, supplemented by the discharge provided by the overtopping of the rehabilitated portion of the dam, would allow safe passage of the IDF with a minimum of 0.5 m of freeboard with respect to the top of the North Dam (El. 311.9 m). Stability requirements for the North Dam, with respect to 2011 LRIA, have not been evaluated. It is possible that this dam requires some remedial measures to satisfy these requirements; but these have not been included in this analysis.

The first option evaluated for rehabilitating the dam is the installation of post-tensioned anchors at the weirs to improve the dam stability. The dam would be a similar structure to the present one, without the bridge deck and the upper portion of the piers. The top level of the weir would be El. 310.0 m . This alternative is, in general, cost effective, easy to construct and requires
minor maintenance. As previously indicated, for it to be feasible, the concrete body of the existing weirs must be reasonably intact and the soil foundation to approximately 15 m below the ground must be able to carry the post-tensioning design force. If the concrete in the weirs is similar to that revealed by the limited concrete coring obtained at the piers, its condition is deteriorated and is not appropriate for the installation of the post-tensioned anchors.

Appendix D shows a cost estimate for this rehabilitation option with a total value of $\$ 2,869,000$. It includes construction costs for removal of damage concrete in the weirs (up to 0.5 m from the surface), installation of post-tensioned anchors, cofferdam and works to divert water from the area of work, using the North Dam, and demolition of the bridge deck and part of the piers. General costs, such as mobilization, demobilization, site investigations, environmental program, material quality control, site restoration are included, as a percentage of the work activities previously listed. The estimate also includes costs for design, engineering and permitting, overhead and administration as well as a cost contingency, which were estimated as percentages of the construction cost.

The second rehabilitation option is the addition of mass to the overflow weir. This can be achieved by removing the deteriorated concrete at the surface of the weir (up to 0.5 m from the surface) and placing new concrete around the cross-section of the existing weir. The new concrete would result in a bigger structure than the present one, with sufficient mass to satisfy the stability requirements. The top of the weir would be El. 310.0 m . For this option to be feasible, the concrete body of the existing weir must be reasonably intact. Otherwise, the removal of the deteriorated concrete could result in demolishing the entire weir. Similarly, if the foundation is not sound, the repair works could require removal of an extensive part of the structure. In both cases, this option would change to removal of the dam and/or dam replacement.

The dam rehabilitation by addition of mass, if feasible, will in general involve more construction activities than the installation of post-tension anchors. This reflects in greater construction costs, as well as increased cost of the activities estimated as a percentage of it. The estimated cost for this option is $\$ 4,581,000$ and it is provided in Appendix D .

5.4 DAM REPLACEMENT

This alternative consists of replacing the existing dam with a new dam constructed at the same location. It would involve water diversion, demolition of the existing bridge and dam, investigation of the foundation condition and properties, and building of the new structure. The new dam would satisfy the stability requirements, in accordance with the 2011 LRIA. It also will, in conjunction with the North Dam, provide adequate spill capacity to safely pass the IDF with a minimum of 0.5 m freeboard with respect to the top of the North Dam (El. 311.9 m). As indicated in Section 5.3, the stability requirements for the North Dam have not been assessed and it is possible that further work is required to ensure that this structure satisfy the requirements of 2011 LRIA.

Two options were considered for the Dam Replacement alternative:

1. Concrete weir

2. Earth embankment with an additional sluiceway structure

The first dam replacement option consists of maintaining the North Dam and replacing the South Dam with a concrete weir across the river. The weir would extend from the south bank to the abutment of the North Dam. It would be built up to El. 310.0 m , to maintain historical water levels in the reservoir. The cost estimates for this option are shown in Appendix D and amount to $\$ 6,209,000$. They include construction costs as well as design, engineering, permitting, overhead and project management by the Township and contingency costs, which were estimated as percentages of the construction cost.

The second dam replacement option consists of maintaining the North Dam and replacing the South Dam with an earth embankment and a new sluiceway structure, of a similar size to the North Dam. The new sluiceway structure would provide the required additional spill capacity to ensure safe passage of the IDF with a minimum 0.5 m of freeboard with respect to the top of the North Dam. It includes provision of a winch mechanism to allow operation of the sluiceway structure in response to floods. The crest of the proposed new dam would be at the same level as the North Dam (El. 311.9 m). Since the new dam would consist of an earth embankment, it will be vulnerable to a failure if it is overtopped. The estimated cost of this alternative is included in Appendix D and amounts to $\$ 3,960,000$.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the stability analyses, the entire dam does not meet the 2011 LRIA sliding stability criteria. Remedial work is required to address the dam stability deficiency.

The bridge at the Howson Dam is currently closed to vehicle traffic; but it is accessible to pedestrian use. Although an analysis of the bridge or its elements was not part of the scope of work, and has not been completed, the information obtained from the limited concrete cores, and the site observations, suggest the bridge being structurally deficient. It is our opinion that the further use of the bridge may pose a risk to the public and that the safety of the bridge should be addressed.

The following alternatives for addressing the stability deficiency of the South Dam at the Howson Dam were evaluated:

- Do nothing
- Dam Decommissioning
- Dam Rehabilitation
- Dam Replacement

AACE Class 4 estimates, with an accuracy of plus or minus 40 to 50%, were obtained for these alternatives and are provided in the report.

The do nothing alternative was considered not feasible because it would not address the risk posed by the dam, which does not satisfy the dam safety requirements indicated in the 2011 MNRF for stability, or that of the bridge at its present state of deterioration.

The alternative of dam decommissioning was not ruled unfeasible; but it would require an extensive process of consultation at various levels. It is anticipated, based on the input obtained during the 2016 EA, that it could be opposed by the public. A cost estimate of $\$ 436,000$ was obtained for this option. This cost does not include some costs that might be related to environmental controls and management of fish population or fish habitat. There are also considerations such as effect on species at risk and on the character of the area and public use of the site for which a monetary value is difficult to assign.

Two options were considered for dam rehabilitation: installation of post-tension anchors and addition of concrete mass. Both alternatives need to be confirmed with site investigations to assess the condition of the concrete in the weirs and the foundation of the dam. The information available suggests that these options will likely be found not feasible after these site investigations. Nonetheless, a cost estimate was prepared assuming that the concrete in the weirs would be found to be sound and would only need removal of damaged concrete up to 0.5 m of depth from the surface. The cost estimate also was based on the assumption of a competent dam foundation. The rehabilitation options, if feasible, would ensure that the South Dam satisfies the stability requirements of the LRIA. The rehabilitated dam, in conjunction with the North Dam would allow safe passage of the IDF in accordance with the requirements by the LRIA. The estimated costs of the two rehabilitation options are:

- Installation of post-tensioned anchors at the overflow weirs: \$ 2,869,000
- Addition of concrete mass to the overflow weirs: \$4,581,000

Additional evaluation is necessary to assess the structural stability of the North Dam. It is possible that, as the result of this assessment, the North Dam also requires rehabilitation works to satisfy the LRIA, which have not been included in the cost estimates presented above.

Two options were considered for rebuilding the dam: concrete weir and earth embankment with an additional sluiceway structure. These options would allow satisfying the requirements of the LRIA. As in the case of the rehabilitation options, the rebuilt dam would require the spill capacity from the North Dam to safely pass the IDF. The stability of the North Dam would need to be assessed and it could potentially need rehabilitation works to ensure that this dam also satisfies the requirement of the LRIA. The estimated costs of the two rebuilt options are:

- New concrete overflow weir \$ 6,209,000
- Earth embankment and new sluiceway structure: \$3,960,000

Further consideration of these alternatives is required, including public consultation. It is recommended that these are included in the EA process initiated in 2016. A more detailed investigation program to determine the concrete condition of the overflow weir and its foundation condition are recommended prior to selecting the preferred alternative. These investigations and analyses will be required to confirm the feasibility of any of the rehabilitation options.

7.0 STATEMENT OF LIMITATIONS

7.1 THIRD PARTY USE OF REPORT

This report has been prepared for the Township of North Huron to whom this report has been addressed and any use a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. KGS Group accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions undertaken based on this report. This report has been prepared for the Client to whom this report has been addressed and any use a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. KGS Group accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions undertaken based on this report.

8.0 REFERENCE

1. Ontario Ministry of Natural Resources (MNR), 2011, Lakes And Rivers Improvement ActAdministrative Guide, Technical Bulletins and Best Management Practices
2. Request for Proposals for the Provision of Consulting Services for the Howson Dam - Dam Safety Assessment, 2017, Township of North Huron
3. Howson Dam Safety Assessment Proposal for Engineering Services, April 2017, KGS Group Consulting Engineers
4. Proposed Repairs To Howson Dam, March 2015, BM Ross and Associates Limited.
5. Inspection Report No. 009, November 2013 BM (Ross 2013a), BM Ross and Associates Limited.
6. Inspection Report No. 010, November 2013 BM (Ross 2013b), BM Ross and Associates Limited.
7. Preliminary Engineering Report, October 1985, BM Ross and Associates Limited.
8. Evaluation of Existing Main Howson Dam Bridge Structure, December 1984, BM Ross and Associates Limited.
9. Report On Howson Dam, May 1965, Maitland Valley Conservation Authority

APPENDIX A

CONSTRUCTION DRAWINGS

METHOD

APPENDIX B
STABILITY CALCULATIONS

Notes and Figures			
Properties of Materials			
\square			
$\gamma_{\mathrm{w}=}=9.81 \frac{\mathrm{kN}}{\mathrm{m}^{3}}$	Water density	(silt $=7.7 \cdot \frac{\mathrm{kN}}{\mathrm{m}^{3}}$	Silt density
	Concrete density adjusted due to combination ofthe pier and abutment sections.	\$silit: $=20 \cdot$ dees	Angle of intemal fricioion for silt at rest condi
roonc: $=23.5 \cdot \frac{\mathrm{kN}}{\mathrm{m}^{3}}$		-10 $=77 . \mathrm{kN}$	
$\phi_{\text {cff }:}=23 \cdot \mathrm{deg}$	Fricion angl of oncreteffoundation interace		Bactill densty
		¢fitil $=30$ dees	Angle of interal triction for badifill at rest onodition
\underline{y}	Conesion at conceteffoundation iterefae (generally set to o)	Timber: $=10 . \mathrm{kN}$	
			Timber density for stoplogs)
ficf: $=\frac{-c}{2}=0$	Tensile strength at concrete/rock interface (generally set to 0 , or $0.5 \times$ cohesion). This is a negative number.	YGaralar: $=15 \frac{\mathrm{kN}}{\mathrm{m}^{3}}$	Weight of granular material or rip rap on top of section

Water Levels

∇

Usual Summer Operating Levels

WLUS.Sum $:=310.9 \mathrm{~m}$	Upstream water level (left side)
WLDS.Sum $:=305.27 \mathrm{~m}$	
Downstream water level (right side)	

Usual Winter Operating Levels Used in LC 2
WLUS.Win := 309.26m
WLDS.Win := 305.27 m

Unusual Flood Discharge Levels

Used in LC 3
WLUS.IDF: $=311.9 \mathrm{~m}$
WLDS.IDF: $=310.3 \mathrm{~m}$
-

Seismic Accelerations

-

$\lambda_{\text {Hor }}:=0.0834$
$\lambda \operatorname{Ver}:=\frac{2}{3} \cdot \lambda_{\mathrm{Hor}}=0.056$
Vertical component of earthquake intensity. CDA recommends a factor between $1 / 2$ and $2 / 3$ of the horizontal acceleration (pg 15 of Seismic Hazard Considerations Technical Bulletin)

Structure Geometry

Input

Note: Enter structure geometry as series of points on $X-Y$ grid. Align structure so that up streamis on the left side. Structure outline is "closed" automatically (last point is assigned same values as first). Ensure that values of ELE.Base.L and ELE.Base.R are adjusted to correspond with the lowest upstream and downstream elevations.

Lhor $:=\max (\mathrm{X})-\min (\mathrm{X})=7.95 \mathrm{~m}$
Horizontal projection of base
Angle of inclination of base. Positive is counter clockwise from the horizontal in the downstream direction

Inclined length of concrete-foundation interface

Variables for Combines Structure Mode

Bpier: $=\mathrm{B}=1.67 \mathrm{~m}$
Lincl.pier: $: \mathrm{L}_{\text {incl }}=7.95 \mathrm{~m}$
$\alpha_{\text {pier }}:=0$
Δ Input

1- Plot Functions

Computation of Area and Center of Gravity

Gate/Stoplog Geometry

-

$\mathrm{X}_{\text {log }}:=0 \cdot \mathrm{~m}$

ELEgate.top $:=310.28 \mathrm{~m}$
Tribgate $:=\frac{10 . \mathrm{ft}}{2}=1.52 \mathrm{~m}$
Wigate $:=0 \mathrm{~m}$
Total width of gate/stoplogs (for calculating weight on slab/rollway)

Forces on Gates/Stoplogs Transferred into Piers

GatesSum.Hyd $:=1$	If gates are present during summer operation (and earthquake), set $=1$, otherwise set to 0
GatesWin.Hyd $:=1$	If gates are present during winter operation, set $=1$, otherwise set to 0
GatesIDF.Hyd $:=1$	If gates are present during IDF, set $=1$, otherwise set to 0

Weight of Gates/Stoplogs bearing on rollway/slab

GatesSum.Weight $:=0$	If gates are present during summer operation (and earthquake), set $=1$, otherwise set to 0
GatesWin.Weight $:=0$	If gates are present during winter operation, set $=1$, otherwise set to 0
GatesIDF.Weight $:=0$	If gates are present during IDF, set $=1$, otherwise set to 0

-

Weight of Main Structure (D)

-

$\mathrm{B}_{\text {ave }}:=\frac{2.03+0.93}{2} \cdot \mathrm{~m}=1.48 \mathrm{~m}$
Vol_conc $:=$ Area $\cdot \mathrm{B}_{\mathrm{ave}}=66.7 \cdot \mathrm{~m}^{3}$
$\mathrm{W}_{\text {conc }}:=$ Vol_conc $\cdot \gamma_{\text {conc }}=1568 \cdot \mathrm{kN}$
MA $:=\mathrm{L}_{\mathrm{hor}}-\mathrm{Xg}=3.975 \mathrm{~m}$
$\mathrm{M}_{\text {conc }}:=\mathrm{W}_{\text {conc }} \cdot \mathrm{MA}=6231.8 \cdot \mathrm{kN} \cdot \mathrm{m}$

Average width of the structure for calculating the pier weight

Volume of concrete per unit width of structure

Dead load of concrete in structure

Moment arm is the horizontal distance from right side of base to C.G
Moment from structure self weight

$$
\begin{aligned}
& \gamma_{\text {conc }}=23.5 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{3}} \\
& \text { Area }=45.1 \mathrm{~m}^{2} \\
& \mathrm{~B}=1.7 \mathrm{~m} \\
& \mathrm{~L}_{\text {hor }}=7.95 \mathrm{~m} \\
& \mathrm{Xg}=3.975 \mathrm{~m} \\
& \mathrm{Yg}=308.105 \mathrm{~m}
\end{aligned}
$$

Weight of Stoplogs (D) - NOT APPLICABLE

10

Weight of Slab (D)

∇

$\mathrm{Wi}_{\text {slab }}:=11.58 \cdot \mathrm{~m}$	Slab width
$\mathrm{L}_{\text {slab }}:=7.95 \cdot \mathrm{~m}$	Total length of slab
$\mathrm{S}_{\text {thk }}:=0.25 \mathrm{~m}$	Equivalent slab thickness
$\mathrm{Wi}_{\text {Gir }}:=0.55 \cdot \mathrm{~m}$	Girder width
$\gamma_{\mathrm{conc}}=23.5 \cdot \frac{\mathrm{kN}}{\mathrm{m}^{3}}$	

L Gir $:=11.58 \cdot \mathrm{~m}$	Total length of girder
Gir ${ }_{\text {thk }}:=\frac{1+0.4}{2} \cdot \mathrm{~m}=0.7 \mathrm{~m}$	

Gir $_{\mathrm{No}}:=4$ (conservative assumption)

Number of girders in each span
ELE $_{\text {slab }}:=312.48 \cdot \mathrm{~m}-\frac{\left[\mathrm{L}_{\text {slab }} \cdot \mathrm{Wi}_{\text {slab }} \cdot \mathrm{S}_{\text {thk }} \cdot \frac{\mathrm{S}_{\text {thk }}}{2}+\text { Gir No } \cdot \mathrm{L}_{\mathrm{Gir}} \cdot \mathrm{Wi}_{\text {Gir }} \cdot \operatorname{Gir}_{\text {thk }} \cdot\left(\frac{\text { Gir }_{\text {thk }}}{2}+\mathrm{S}_{\text {thk }}\right)\right]}{\mathrm{L}_{\text {slab }} \cdot \mathrm{Wi}_{\text {slab }} \cdot \mathrm{S}_{\text {thk }}+\mathrm{Gir}_{\mathrm{No}} \cdot \mathrm{L}_{\mathrm{Gir}} \cdot \mathrm{Wi}_{\mathrm{Gir}} \cdot \mathrm{Gir}_{\text {thk }}}=312.15 \mathrm{~m}$
$\mathrm{X}_{\text {slab }}:=\frac{\mathrm{L}_{\text {slab }}}{2}=3.98 \mathrm{~m}$
$\mathrm{Wi}_{\text {opening }}:=0 \mathrm{~m}$
Lopening := 8.23 m
$\mathrm{X}_{\text {opening }}:=2.12 \mathrm{~m}$
Horizontal distance from left side ($x=0$) to centre of slab

Width of stoplog
opening
Length of stoplog opening

Horizontal distance from left side $(x=0)$ to centre of slab
$\mathrm{W}_{\text {slab1 }}:=\gamma_{\text {conc }} \cdot\left(\mathrm{L}_{\text {slab }} \cdot \mathrm{Wi}_{\text {slab }} \cdot \mathrm{S}_{\text {thk }}+\mathrm{Gir}_{\mathrm{No}} \cdot \mathrm{L}_{\text {Gir }} \cdot \mathrm{Wi}_{\text {Gir }} \cdot\right.$ Gir $\left._{\text {thk }}\right)=959.9 \cdot \mathrm{kN} \quad$ Dead load from slab (not considering opening)
MA $_{\text {slab1 }}:=\mathrm{L}_{\text {hor }}-\mathrm{X}_{\text {slab }}=3.975 \mathrm{~m} \quad$ Moment arm measured as horizontal distance from centre of slab to right side of base
$\mathrm{W}_{\text {opening }}:=\gamma_{\text {conc }} \cdot \mathrm{L}_{\text {opening }} \cdot \mathrm{Wi}_{\text {opening }} \cdot \mathrm{S}_{\text {thk }}=0 \quad$ Weight to be removed from slab due to opening
$\mathrm{MA}_{\text {opening }}:=\mathrm{L}_{\text {hor }}-\mathrm{X}_{\text {opening }}=5.830 \mathrm{~m} \quad$ Moment arm measured as horizontal distance from centre of opening to right side of
$\mathrm{W}_{\text {slab }}:=\mathrm{W}_{\text {slab1 }}-\mathrm{W}_{\text {opening }}=959.9 \mathrm{kN}$
Net dead load from slab

DESIGN CALCULATIONS

Weight of Tower(D) - NOT APPLICABLE

四

Weight of Riprap / Granular Material on Top of Section - NOT APPLICALBE

Input coordinates
1-Calculations

Results

Upstream Hydrostatic Force (H)

Figures
Calculations

Note: If inclined face is present, it is assumed to be linear from heel to water level.

Case 1: Summer Operating Level
$\underset{\mathrm{M}}{\mathrm{H}}:=\left\lvert\, \begin{array}{ll}0 & \text { if WLUS.Sum } \leq \text { ELEBase } . L\end{array} \quad=5.630\right.$
Height of water in front of section

PUS.Sum := H $\cdot \gamma_{w}=55.2 \mathrm{kPa}$
$\mathrm{H}_{\text {above }}:=\left\lvert\, \begin{aligned} & 0 \text { if WLUS.Sum } \leq \text { ELE }_{\text {Top }} \\ & \text { WLUS.Sum } \text { ELE } \text { ELop otherwise }\end{aligned}\right.$
Height of water above top of section
$L_{\text {below }}:=\frac{\mathrm{H}-\mathrm{H}_{\text {above }}}{\cos \left(\omega_{\mathrm{US}}\right)}=5.630 \mathrm{~m}$
Inclined length of face under water
$\mathrm{F} 1:=\frac{\left(\mathrm{H}-\mathrm{H}_{\text {above }}\right) \cdot \gamma_{\mathrm{w}} \cdot \mathrm{L}_{\text {below }}}{2} \cdot \mathrm{~B}=260.4 \mathrm{kN} \quad$ Force due to triangular portion of pressure diagram
Horizontal component of F1
$\mathrm{F} 1_{\mathrm{Ver}}:=\mathrm{F} 1 \cdot \sin \left(\omega_{\mathrm{US}}\right)=0 \mathrm{kN} \quad$ Vertical component of F1
$\operatorname{ELEF}:=$ ELEBase. $\mathrm{L}+\left(\frac{\mathrm{L}_{\text {below }}}{3}\right) \cdot \cos \left(\omega_{\mathrm{US}}\right)=307.147 \mathrm{~m} \quad$ Elevation of F1

MAF1.Hor := ELEF1 - ELEBase.R $=1.877 \mathrm{~m} \quad$ Moment arm of horizontal component of F1
MAF1.Ver $:=L_{\text {hor }}-\left(E L E F 1-E_{\text {ELEBase. }}\right) \tan \left(\omega_{U S}\right)=7.950 \mathrm{~m}$
$\mathrm{F} 2:=\mathrm{H}_{\text {above }} \cdot \gamma_{\mathrm{w}} \cdot \mathrm{L}_{\text {below }} \cdot \mathrm{B}=0.0 \mathrm{kN}$
Moment arm of vertical component of F1

F 2 Hor $:=\mathrm{F} 2 \cdot \cos (\omega \mathrm{US})=0 \mathrm{kN}$
F 2 Ver $:=\mathrm{F} 2 \cdot \sin \left(\omega_{\mathrm{US}}\right)=0 \mathrm{kN}$
ELEF2 $:=$ ELEBase. $L+\left(\frac{L_{\text {below }}}{2}\right) \cdot \cos \left(\omega_{\mathrm{US}}\right)=308.085 \mathrm{~m}$

WLUS.Sum $=310.900 \mathrm{~m}$
ELETop $=310.940 \mathrm{~m}$
ELEBase $. L=305.270 \mathrm{~m}$
ELEBase. $R=305.270 \mathrm{~m}$
$\omega_{U S}=0.0$
$L_{\text {hor }}=7.95 \mathrm{~m}$
$\mathrm{~B}=1.67 \mathrm{~m}$

```
MAF2.Hor := ELEF2 - ELEBase. R \(=2.815 \mathrm{~m}\)
MAF2.Ver \(:=\) Lhor \(-\left(\right.\) ELEF2 \(^{2}-\) ELEBase.L \() \tan \left(\omega_{\mathrm{US}}\right)=7.950 \mathrm{~m}\)
FUS.Sum.Hor : \(={ }^{\mathrm{F}} 1_{\text {Hor }}+\mathrm{F} 2\) Hor \(=260.4 \mathrm{kN}\)
FUS.Sum.Ver : \(=\mathrm{F} 1\) Ver + F2 Ver \(=0 \mathrm{kN}\)
MUS.Sum.Hor \(:={ }^{\text {F1 Hor }} \cdot\) MAF1.Hor + F2 Hor \(\cdot\) MAF2.Hor \(=488.7 \mathrm{kN} \cdot \mathrm{m}\)
MUS.Sum.Ver \(:=\) F1 Ver \(\cdot\) MAF1.Ver + F2Ver \(\cdot\) MAF2.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
```


Case 2: Winter Operating Level

$\mathrm{H}:=\| \begin{aligned} & 0 \text { if WLUS.Win } \leq \text { ELEBase.L } \quad=3.990 \\ & \text { WLUS.Win }- \text { ELEBase.L }^{2} \text { otherwise }\end{aligned}$

PUS.Win : $=\mathrm{H} \cdot \gamma_{\mathrm{W}}=39.1 \mathrm{kPa}$

Hahoxe: $=\left\lvert\, \begin{array}{ll}0 \text { if WLUS.Win } \leq \text { ELETop } & =0.000 \\ \text { WLUS.Win - ELETop otherwise }\end{array}\right.$
Lbeldw: $=\frac{\mathrm{H}-\mathrm{H}_{\text {above }}}{\cos \left(\omega_{\mathrm{US}}\right)}=3.990 \mathrm{~m}$
$\mathrm{F} 1:=\frac{\left(\mathrm{H}-\mathrm{H}_{\text {above }}\right) \cdot \gamma_{\mathrm{w}} \cdot \mathrm{L}_{\text {below }}}{2} \cdot \mathrm{~B}=130.8 \mathrm{kN}$
$\mathrm{F}_{\mathrm{M}}^{\mathrm{H}} \mathrm{Hgh}:=\mathrm{F} 1 \cdot \cos (\omega \mathrm{US})=130.8 \mathrm{kN}$
F1ADER: $=\mathrm{F} 1 \cdot \sin (\omega \mathrm{US})=0 \mathrm{kN}$
ELEE1 $:=$ ELEBase $\cdot L^{\text {W. }}\left(\frac{L_{\text {below }}}{3}\right) \cdot \cos (\omega \mathrm{US})=306.600 \mathrm{~m}$
MAF ${ }^{\text {Hor }}:=$ ELEF1 - ELEBase $. R=1.330 \mathrm{~m}$
MAFhVer: $=$ Lhor $-\left(E L E F 1-E_{\text {BLE }}\right.$ Base.L $) \tan \left(\omega_{U S}\right)=7.950 \mathrm{~m}$
$\underset{\sim}{\mathrm{F}} 2 \mathrm{~A}_{\mathrm{A}}:=\mathrm{H}_{\text {above }} \cdot \gamma_{\mathrm{w}} \cdot$ L $_{\text {below }} \cdot \mathrm{B}=0.0 \mathrm{kN}$
${ }_{\text {FAN }} 2$ Hort $:=\mathrm{F} 2 \cdot \cos \left(\omega_{\mathrm{US}}\right)=0 \mathrm{kN}$
F2AVER: $=\mathrm{F} 2 \cdot \sin \left(\omega_{\mathrm{US}}\right)=0 \mathrm{kN}$
$\mathrm{ELEF2}_{\mathrm{M}}=$ ELEBase $. L+\left(\frac{\mathrm{L}_{\text {below }}}{2}\right) \cdot \cos \left(\omega_{\mathrm{US}}\right)=307.265 \mathrm{~m}$
MAF22H0r: = ELEF2 - ELEBase.R $=1.995 \mathrm{~m}$

FUS.Win.Hor : $=$ F1 ${ }^{\text {Hor }}+$ F2 Hor $=130.8 \mathrm{kN}$
FUS.Win.Ver: $=$ F1 Ver + F2 Ver $=0 \mathrm{kN}$
MUS.Win.Hor $:=$ F1 Hor \cdot MAF1.Hor + F2 Hor \cdot MAF2.Hor $=174 \mathrm{kN} \cdot \mathrm{m}$
MUS.Win.Ver:= F1 Ver \cdot MAF1.Ver + F2Ver \cdot MAF2.Ver $=0 \mathrm{kN} \cdot \mathrm{m}$

Case 3: IDF Level

H: \| $\begin{array}{lll}0 & \text { if WLUS.IDF } \leq \text { ELEBase.L } & =6.630 \\ \text { WLUS.IDF }- \text { ELEBase.L otherwise }\end{array}$
PUS.IDF: $=\mathrm{H} \cdot \gamma_{W}=65 \mathrm{kPa}$

$$
\text { Haboxe: }=\left\lvert\, \begin{array}{ll}
0 \text { if WLUS.IDF } \leq \text { ELETop } & =0.960 \\
\text { WLUS.IDF - ELETop otherwise } &
\end{array}\right.
$$

Lbeldaki $=\frac{\mathrm{H}-\mathrm{H}_{\text {above }}}{\cos \left(\omega_{\mathrm{US}}\right)}=5.670 \mathrm{~m}$
$\mathrm{F} 1:=\frac{\left(\mathrm{H}-\mathrm{H}_{\text {above }}\right) \cdot \gamma_{\mathrm{w}} \cdot \text { L }_{\text {below }}}{2} \cdot \mathrm{~B}=264.1 \mathrm{kN}$
F1 ${ }^{\text {F }} \mathrm{h}:=\mathrm{F} 1 \cdot \cos \left(\omega_{\mathrm{US}}\right)=264.1 \mathrm{kN}$

Horizontal hydrostatic force
Vertical hydrostatic force
Moment due to horizontal component of hydrostatic force
Moment due to vertical component of hydrostatic force

WLUS.Win $=309.260 \mathrm{~m}$
ELETop $=310.940 \mathrm{~m}$
ELEBase. $\mathrm{L}=305.270 \mathrm{~m}$
ELEBase $. \mathrm{R}=305.270 \mathrm{~m}$
$\omega_{\mathrm{US}}=0.0$
Lhor $_{\text {hor }}=7.95 \mathrm{~m}$
$B=1.67 \mathrm{~m}$

$B=1.67 \mathrm{~m}$
WLUS.IDF $=311.900 \mathrm{~m}$
ELETop $=310.940 \mathrm{~m}$
ELEBase $. L=305.270 \mathrm{~m}$
ELEBase. $R=305.270 \mathrm{~m}$
$\omega_{U S}=0.0$
$L_{\text {hor }}=7.95 \mathrm{~m}$
$B=1.67 \mathrm{~m}$

```
F1 \(\mathrm{Ver}_{\mathrm{A}}:=\mathrm{F} 1 \cdot \sin (\omega \mathrm{US})=0 \mathrm{kN}\)
\(\mathrm{ELE}_{\mathrm{M} 1}:=\) ELE Base.L \(^{\mathrm{M}}+\left(\frac{\mathrm{L}_{\text {below }}}{3}\right) \cdot \cos \left(\omega_{\mathrm{US}}\right)=307.160 \mathrm{~m}\)
MAEAH0r: \(=\) ELEF1 - ELEBase. \(\mathrm{R}=1.890 \mathrm{~m}\)
MAFhVer: \(=\) Lhor \(-\left(E L E F 1-E_{\text {LEBASe.L }}\right) \tan \left(\omega_{U S}\right)=7.950 \mathrm{~m}\)
F2 \(:=H_{\text {above }} \cdot \gamma_{w} \cdot L_{\text {below }} \cdot B=89.4 \mathrm{kN}\)
```



```
\(\mathrm{F}_{4} \mathrm{Nerer}_{\mathrm{i}}:=\mathrm{F} 2 \cdot \sin \left(\omega_{\mathrm{US}}\right)=0 \mathrm{kN}\)
\(\mathrm{ELEFR}_{\mathrm{M}}=\) ELEBase \(. L+\left(\frac{\mathrm{L}_{\text {below }}}{2}\right) \cdot \cos (\omega \mathrm{US})=308.105 \mathrm{~m}\)
MAF2uHan: \(=\) ELE \(_{F 2}-\) ELE Base. \(^{\text {R }}=2.835 \mathrm{~m}\)
```



```
FUS.IDF.Hor : \(=\) F1 \({ }^{\text {Hor }}+\) F2 \(\mathrm{Hor}=353.6 \mathrm{kN}\)
FUS.IDF.Ver : \(=\mathrm{F} 1_{\mathrm{Ver}}+\mathrm{F} 2 \mathrm{Ver}=0 \mathrm{kN}\)
MUS.IDF.Hor \(:=\) F1 Hor \(\cdot\) MAF1.Hor + F2 Hor \(\cdot\) MAF2.Hor \(=752.8 \mathrm{kN} \cdot \mathrm{m}\)
MUS.IDF.Ver \(:=\mathrm{F}^{\mathrm{VVer}} \cdot \mathrm{MA}_{\mathrm{F} 1 . \mathrm{Ver}}+\mathrm{F} 2 \mathrm{Ver} \cdot \mathrm{MA}_{\mathrm{F} 2 . \mathrm{Ver}}=0 \mathrm{kN} \cdot \mathrm{m}\)
- Calculations
```


Downstream Hydrostatic Force (H)

[^0]
Hydrostatic Force on Gates (H)

Calculations

Note: Pressure from tailwater not considered. Calculations assume a flat vertical face

Case 1: Summer operating level

Case 1: Summer operating level	Height of water in front of gate/stoplogs		GatesSum.Hyd = 1
			GatesWin.Hyd $=1$
			$\begin{aligned} & \text { GatesIDF.Hyd = } 1 \\ & \text { WLUS.Sum }=310.900 \mathrm{~m} \\ & \text { WLUS. Win }=309.260 \mathrm{~m} \end{aligned}$
			$\text { WLUS.IDF }=311.900 \mathrm{~m}$
$\begin{aligned} & \text { Haboxe: }: \left\lvert\, \begin{array}{l} 0 \text { if WLUS.Sum } \leq \text { ELEgate.top } \\ \text { WLUS.Sum }- \text { ELE gate.top otherwise } \end{array}\right. \\ & \text { F1 }:=\frac{\left(\mathrm{H}-\mathrm{H}_{\mathrm{above}}\right)^{2} \cdot \gamma_{\mathrm{w}}}{2} \cdot \text { Tribgate }=74.2 \mathrm{kN} \end{aligned}$	Height of water above top of gate/stoplogs		$\begin{aligned} & \text { ELE }_{\text {sill }}=307.130 \mathrm{~m} \\ & \text { ELE }_{\text {gate.top }}=310.280 \mathrm{~m} \end{aligned}$
			ELEBase.R $=305.270 \mathrm{~m}$
	Force due to triangular portion of pressure diagram		Tribgate $=1.524 \mathrm{~m}$
			Lhor $=7.95 \mathrm{~m}$
	Moment arm		
$\mathrm{F} 2:=\mathrm{H}_{\mathrm{above}} \cdot\left(\mathrm{H}-\mathrm{H}_{\text {above }}\right) \cdot \gamma_{\mathrm{w}} \cdot \text { Trib }_{\text {gate }}=29.2 \mathrm{kN}$	Force due to rectangular portion of pressure diagram		
MA2 $:=\left(\right.$ ELE $_{\text {sill }}+\frac{\mathrm{H}-\mathrm{H}_{\text {above }}}{2}-$ ELEBase.R $\left.^{2}\right)=3.435 \mathrm{~m}$	Moment arm		
$\mathrm{F}_{\text {gateH.Sum }}:=\left\lvert\, \begin{aligned} & (\mathrm{F} 1+\mathrm{F} 2) \text { if GatesSum.Hyd }=1=103.4 \cdot \mathrm{kN} \\ & 0 \text { otherwise } \end{aligned}\right.$		Total hydrostatic force on gater	logs
$\mathrm{M}_{\text {gateH.Sum }}:=\left\lvert\, \begin{aligned} & (\mathrm{F} 1 \cdot \mathrm{MA} 1+\mathrm{F} 2 \cdot \mathrm{MA} 2) \text { if GatesSum.Hyd }=1 \\ & 0 \text { otherwise } \end{aligned}\right.$	$=316.1 \cdot \mathrm{kN} \cdot \mathrm{m}$	Moment due to hydrostatic	gate/stoplogs

Case 2: Winter operating level

$$
\begin{aligned}
& \mathrm{M}:=\| \begin{array}{l}
0 \text { if WLUS.Win } \leq \text { ELE }_{\text {sill }} \\
\text { WLUS.Win }- \text { ELE }_{\text {sill }} \text { otherwise }
\end{array} \\
& \text { Haboxe: }: \left\lvert\, \begin{array}{ll}
0 \text { if WLUS.Win } \leq \text { ELEgate.top } & =0.000 \\
\text { WLUS.Win - ELEgate.top otherwise }
\end{array}\right. \\
& \mathrm{F} 1:=\frac{\left(\mathrm{H}-\mathrm{H}_{\mathrm{above}}\right)^{2} \cdot \gamma_{\mathrm{w}}}{2} \cdot \text { Trib }_{\text {gate }}=33.9 \mathrm{kN} \\
& \text { MA1: }=\left(\text { ELE }_{\text {sill }}+\frac{\mathrm{H}-\mathrm{H}_{\text {above }}}{3}-\text { ELE Base } . R^{3}\right)=2.570 \mathrm{~m} \\
& \text { F2: }=H_{\text {above }} \cdot\left(H-H_{\text {above }}\right) \cdot \gamma_{w} \cdot \text { Trib }_{\text {gate }}=0.0 \mathrm{kN} \\
& \text { MA2 : }=\left(\text { ELE }_{\text {sill }}+\frac{\mathrm{H}-\mathrm{H}_{\text {above }}}{2}-\text { ELE Base } . R^{2}\right)=2.925 \mathrm{~m} \\
& \text { FgateH.Win }:=\left\lvert\, \begin{array}{l}
(\mathrm{F} 1+\mathrm{F} 2) \text { if GatesWin.Hyd }=1=33914.3 \\
0 \text { otherwise }
\end{array}\right. \\
& M_{\text {gateH.Win }}:=\left\lvert\, \begin{array}{l}
(\mathrm{F} 1 \cdot \mathrm{MA1}+\mathrm{F} 2 \cdot \mathrm{MA} 2) \text { if GatesWin.Hyd }=1=87159.8 \\
0 \quad \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Case 3: IDF level

$$
\begin{aligned}
& \mathrm{H}:=\left\lvert\, \begin{array}{l}
0 \text { if WLUS.IDF } \leq \operatorname{ELE}_{\text {Sill }} \\
\text { WLUS.IDF }- \text { ELE }_{\text {Sill }} \text { otherwise }
\end{array} \quad=4.770\right. \\
& \text { Haboxe: }=\left\lvert\, \begin{array}{ll}
0 \text { if WLUS.IDF } \leq \text { ELEgate.top } & =1.620 \\
\text { WLUS.IDF - ELEgate.top otherwise }
\end{array}\right. \\
& \underset{\mathrm{KM}}{\mathrm{~F}}:=\frac{\left(\mathrm{H}-\mathrm{H}_{\mathrm{above}}\right)^{2} \cdot \gamma_{\mathrm{w}}}{2} \cdot \text { Tribgate }=74.2 \mathrm{kN} \\
& \text { MA1: }=\left(\text { ELE }_{\text {sill }}+\frac{\mathrm{H}-\mathrm{H}_{\text {above }}}{3}-\text { ELE Base } . R^{3}\right)=2.910 \mathrm{~m} \\
& \mathrm{~F} 2:=\mathrm{H}_{\text {above }} \cdot\left(\mathrm{H}-\mathrm{H}_{\text {above }}\right) \cdot \gamma_{\mathrm{w}} \cdot \text { Trib }_{\text {gate }}=76.3 \mathrm{kN} \\
& \text { MA2 }:=\left(\text { ELE }_{\text {sill }}+\frac{\mathrm{H}-\mathrm{H}_{\text {above }}}{2}-\text { ELE Base } . R^{2}\right)=3.435 \mathrm{~m} \\
& \mathrm{~F}_{\text {gateH.IDF }}:=\| \begin{array}{l}
(\mathrm{F} 1+\mathrm{F} 2) \text { if Gates }{ }^{\text {IDF.Hyd }}=1=150.5 \cdot \mathrm{kN} \\
0 \text { otherwise }
\end{array} \\
& \mathrm{M}_{\text {gateH.IDF }}:=\left\{\begin{array}{l}
(\mathrm{F} 1 \cdot \mathrm{MA1}+\mathrm{F} 2 \cdot \mathrm{MA} 2) \text { if GatesIDF.Hyd }=1=477.9 \cdot \mathrm{kN} \cdot \mathrm{~m} \\
0 \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Hydraulic Drag Force (H)

風
Weight of Water Above Section (H) - NOT APPLICABLE

Input coordinates

1- Calculations

1-Results

Initial Uplift Forces (U)

Figures

Uplift Function Definition

Input and Calculation

Note: Analysis assumes uplift pressure acts perpendicular to the concrete-foundation interface. Uplift pressure is considered positive, but the actual forces are negative when vertically upwards and positive in downstream (right) direction. Crack length is initially set to 0 but may change in subsequent cracked base analysis. Uplift is calculated again in the cracked section analysis and in the post-earthquake load combination.

Factor UL : $=1.00$
$\mathrm{L}_{\text {crack } 0}:=0 \cdot \mathrm{~m}$
Factor to reduce uplift pressure if required. Set to 1.00 for 100%.
Set initial crack length. Measured from left side, parallel to base

PUSUL.Sum $:=$ Factor UL \cdot PUS.Sum $=55.2 \cdot \mathrm{kPa}$
Uplift pressure at upstream (left) side
PDSUL.Sum $:=$ FactorUL \cdot PDS.Sum $=0 \cdot \mathrm{kPa}$
Uplift pressure at downstream (right) side
PUSUL.Win $:=$ FactorUL \cdot PUS.Win $=39.1 \cdot \mathrm{kPa}$

PDSUL.Win $:=$ FactorUL \cdot PDS.Win $=0 \cdot \mathrm{kPa}$
PUSUL.IDF $:=$ FactorUL \cdot PUS.IDF $=65 \cdot \mathrm{kPa}$

PDSUL.IDF $:=$ FactorUL \cdot PDS.IDF $=49.3 \cdot \mathrm{kPa}$

> | Lincl $=7.95 \mathrm{~m}$ |
| :--- |
| ELEBase. $\mathrm{L}=305.270 \mathrm{~m}$ |
| ELE Base. $^{\mathrm{R}}=305.270 \mathrm{~m}$ |
| WLUS.Sum $=310.900 \mathrm{~m}$ |
| WLUS.Win $=309.260 \mathrm{~m}$ |
| WLUS.IDF $=311.900 \mathrm{~m}$ |
| WLDS.Sum $=305.270 \mathrm{~m}$ |
| WLDS.Win $=305.270 \mathrm{~m}$ |
| WLDS.IDF $=310.300 \mathrm{~m}$ |
| PUS.Sum $=55.2 \cdot \mathrm{kPa}$ |
| PLS.Sum $^{2}=0.0 \cdot \mathrm{kPa}$ |

Case 1: Water at summer operating levels

$P_{\mathrm{U} . \operatorname{Sum}}(\mathrm{x}):=\mathrm{P}_{\mathrm{UL}}\left(\mathrm{x}, \mathrm{L}_{\text {crack } 0}, \mathrm{P}_{\mathrm{USUL}} . S u m, \mathrm{P}_{\mathrm{DSUL}} . \operatorname{Sum}\right) \quad$ Creates the pressure function

Total uplift force. Calculated as the area under the uplift pressure diagram.
$M A:=L_{\text {incl }}-\frac{1}{\text { FU0.Sum }^{M}}\left(\int_{0}^{L_{\text {incl }}} \operatorname{PU.Sum}(x) \cdot x \cdot B d x\right)=5.3 m$
MU0.Sum := FU0.Sum $\cdot \mathrm{MA}=1949 \cdot \mathrm{kN} \cdot \mathrm{m}$
Moment arm of uplift force about the right side of base. Measured parallel to base.

Moment from uplift on uncracked section
FU0.Sum.Hor := FU0.Sum $\cdot \sin (\alpha)=0 \cdot \mathrm{kN}$
Uplift resolved into horizontal and vertical forces for subsequent calculations
FU0.Sum.Ver := FU0.Sum $\cdot \cos (\alpha)=-367.7 \cdot \mathrm{kN}$

Case 2: Water at winter operating levels

$$
\begin{aligned}
& \text { PU.Win }(\mathrm{x}):=\text { PUL }\left(\mathrm{x}, \mathrm{~L}_{\text {crack } 0}, \mathrm{P}_{\text {USUL.Win }}, \mathrm{P}_{\text {DSUL.Win }}\right) \\
& \text { FU0.Win : }=\int_{0}^{\mathrm{L}_{\mathrm{incl}}} \operatorname{P}_{\mathrm{U} . \operatorname{Win}(\mathrm{x})} \cdot \mathrm{B} \mathrm{dx}=260.6 \cdot \mathrm{kN} \\
& \text { MA: }=L_{\text {incl }}-\frac{1}{\text { FU0.Win }^{M}}\left(\int_{0}^{L_{\text {incl }}} \operatorname{PU.Win}(x) \cdot x \cdot B d x\right)=5.3 m
\end{aligned}
$$

```
MU0.Win := FU0.Win \(\cdot\) MA \(=1381.2 \cdot \mathrm{kN} \cdot \mathrm{m}\)
FU0.Win.Hor: \(=-\mathrm{F}_{\mathrm{W}} 0\).Win \(\cdot \sin (\alpha)=0 \cdot \mathrm{kN}\)
\(\mathrm{F}_{\mathrm{U} 0}\).Win.Ver \(:=-\mathrm{F}_{\mathrm{U}}\) 0.Win \(\cdot \cos (\alpha)=-260.6 \cdot \mathrm{kN}\)
```


Case 3: Water at IDF Ievels

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{U} . \operatorname{IDF}(\mathrm{x})}:=\mathrm{P}_{\mathrm{UL}}\left(\mathrm{x}, \mathrm{~L}_{\mathrm{crack} 0}, \mathrm{P}_{\mathrm{USUL.IDF}}, \mathrm{P}_{\mathrm{DSUL}} \mathrm{IDF}\right) \\
& \mathrm{F}_{\mathrm{U} 0 . \mathrm{IDF}}:=\int_{0}^{\mathrm{L}_{\mathrm{incl}}} \mathrm{P}_{\mathrm{U} . \operatorname{IDF}}(\mathrm{x}) \cdot \mathrm{B} \mathrm{dx}=761.6 \cdot \mathrm{kN} \\
& \mathrm{MA}_{\mathrm{M}}:=\mathrm{L}_{\mathrm{incl}}-\frac{1}{\mathrm{~F}_{\mathrm{U} 0 . \mathrm{IDF}}}\left(\int_{0}^{\mathrm{L}_{\mathrm{incl}}} \mathrm{P}_{\mathrm{U} . \mathrm{IDF}}(\mathrm{x}) \cdot \mathrm{x} \cdot \mathrm{~B} \mathrm{dx}\right)=4.16 \mathrm{~m} \\
& \mathrm{M}_{\mathrm{U} 0 . \mathrm{IDF}}:=\mathrm{F}_{\mathrm{U} 0 . \mathrm{IDF}} \cdot \mathrm{MA}=3165.8 \cdot \mathrm{kN} \cdot \mathrm{~m} \\
& \mathrm{~F}_{\mathrm{U} 0 . \mathrm{IDF} . \mathrm{Hor}}:=-\mathrm{F}_{\mathrm{U} 0 . \mathrm{IDF}} \cdot \sin (\alpha)=0 \cdot \mathrm{kN} \\
& \mathrm{~F}_{\mathrm{U} 0 . \mathrm{IDF} . \mathrm{Ver}}:=-\mathrm{F}_{\mathrm{U} 0 . \mathrm{IDF}} \cdot \cos (\alpha)=-761.6 \cdot \mathrm{kN} \\
& \text { Input and Calculation } \\
& \text { In } \\
& \text { Plot of Results }
\end{aligned}
$$

Upstream Silt Buildup (S)

1-

Downstream Backfill (S)

風
Ice Loading (I)

USUAL LOAD CASE

Direct ice load on structure

IceLoad $_{\text {usual }}:=75 \frac{\mathrm{kN}}{\mathrm{m}}$
Fice.1.usual $=\operatorname{IceLoad}_{\text {usual }} B=125.6 \cdot \mathrm{kN}$
ELE ${ }_{\text {ice }}:=$ WLUS.Win $-0.3 \mathrm{~m}=308.96 \mathrm{~m}$
MA:= ELEice - ELEBase. R $=3.7 \mathrm{~m}$
$\mathrm{M}_{\text {ice.1.usual }}:=\mathrm{F}_{\text {ice.1.usual }} \cdot \mathrm{MA}=463.6 \cdot \mathrm{kN} \cdot \mathrm{m}$

Ice load on adjacent gates/stop logs

Note: Ice load in this section acts on the tributary gate width to be transferred into gate slots
Fice.gate.usual $:=\left\{\begin{array}{l}0 \text { if GatesWin.Hyd }=0 \\ \text { IceLoad }_{\text {usual }} \cdot \text { Trib }_{\text {gate }} \text { otherwise }\end{array}\right.$
$=114.3 \cdot \mathrm{kN}$
Wigate $=0.00$
Tribgate $=1.52 \mathrm{~m}$
ELEBase $. \mathrm{R}=305.270 \mathrm{~m}$
WLUS.Win $=309.260 \mathrm{~m}$
$\mathrm{~B}=1.67 \mathrm{~m}$
GatesWin. Hyd $=1$

Force acting on the structure
Elevation of force (assumed to act at 0.3 m below water level)
Moment arm is vertical distance from force to right side of base
Moment about right side of base

GROUP

```
M
Fice.usual := Fice.1.usual + Fice.gate.usual }=239.9\textrm{kN
Mice.usual := M Mice.1.usual }+\mp@subsup{M}{\mathrm{ ice.gate.usual }}{}=885.3\textrm{kN}\cdot\textrm{m
UNUSUAL LOAD CASE
Direct ice load on structure
IceLoad := 83.5 \frac{\textrm{kN}}{\textrm{m}}
                                    Ice loading on structure (enter as kN/m)
Fice.1 := IceLoad B = 139.9 年N
Force acting on the structure
```



```
Ice load on adjacent gates/stop logs
Note: Ice load in this section acts on the tributary gate width to be transferred into gate slots
```



```
Mice.gate := Fice.gate }\cdot\textrm{MA}=469.6\textrm{kN}\cdot\textrm{m
Fice := Fice.1 + Fice.gate = 267.1 kN
Mice := M Mice.1 }+\mp@subsup{M}{\mathrm{ ice.gate }}{}=985.7\textrm{kN}\cdot\textrm{m
```


Seismic Forces－Inertia of Structure Dead Load（Q）

■

Seismic Forces－Hydrodynamic Forces（Q）

Figures
1－Calculations

Seismic Forces－Dynamic Soil Pressures（Q）

四

Tensioned Anchors－NOT APPLICABLE

回

Other Forces－NOT APPLICABLE

10

Load Case 1. Usual Loading Summer Case ($D+H+S+U$)

LC. 1 - Summary of Forces

Deadloads (D):

$\mathrm{W}_{\text {conc }}=1567.8 \cdot \mathrm{kN}$
$\mathrm{W}_{\text {log. }}$ Sum $=0$
$\mathrm{W}_{\text {slab }}=959.9 \mathrm{kN}$
$\mathrm{W}_{\text {tower }}=0$

$$
\begin{aligned}
& \mathrm{M}_{\text {conc }}=6231.8 \cdot \mathrm{kN} \cdot \mathrm{~m} \\
& \mathrm{M}_{\text {log.Sum }}=0 \\
& \mathrm{M}_{\text {slab }}=3815.8 \mathrm{kN} \cdot \mathrm{~m} \\
& \mathrm{M}_{\text {tower }}=0
\end{aligned}
$$

Hydraulic (H):

FUS.Sum.Hor $=260.4 \cdot \mathrm{kN}$
FUS.Sum.Ver $=0 \cdot \mathrm{kN}$
FDS.Sum.Hor $=0 \mathrm{kN}$
FDS.Sum.Ver $=0 \mathrm{kN}$
FgateH.Sum $=103.4 \mathrm{kN}$
$\mathrm{W}_{\text {Water.Above.Sum }}=0$
MUS.Sum.Hor $=488.7 \cdot \mathrm{kN} \cdot \mathrm{m}$
MUS.Sum.Ver $=0 \cdot \mathrm{kN} \cdot \mathrm{m}$
MDS.Sum.Hor $=0 \mathrm{kN} \cdot \mathrm{m}$
MDS.Sum.Ver $=0 \mathrm{kN} \cdot \mathrm{m}$
$\mathrm{M}_{\text {gateH. }}$ Sum $=316.1 \mathrm{kN} \cdot \mathrm{m}$
MWater.Above.Sum $=0$

Soil (S):

FUS.silt.Hor $=0 \mathrm{kN}$
WUS.silt $=0 \mathrm{kN}$
FDS.fill.Hor $=0$
$\mathrm{W}_{\text {DS.fill }}=0$
$\mathrm{W}_{\text {Granular.Sum }}=0 \mathrm{kN}$
MUS.silt.Hor $=0 \mathrm{kN} \cdot \mathrm{m}$
MUS.silt.Ver $=0 \mathrm{kN} \cdot \mathrm{m}$
$M_{\text {DS.fill.Hor }}=0$
$M_{\text {DS.fill.Ver }}=0$
$\mathrm{M}_{\text {Granular.Sum }}=0 \mathrm{kN} \cdot \mathrm{m}$
Uplift (U):
FU0.Sum.Hor $=0 \cdot \mathrm{kN} \quad$ MU0.Sum $=1949 \cdot \mathrm{kN} \cdot \mathrm{m}$
FU0.Sum.Ver $=-367.7 \cdot \mathrm{kN}$

Other Forces:

Fanchor. Hor $=0$
$\mathrm{M}_{\text {anchor. }}$ Hor $=0$
Fanchor.Ver $=0$
Fother.Hor. $1=0$
$\mathrm{M}_{\text {anchor. }}$ Ver $=0$
$\mathrm{M}_{\text {other.Hor. } 1}=0$
Fother.Ver. $1=0$
$\mathrm{M}_{\mathrm{other} . \text { Ver. } 1}=0$

LC. 1 - Combine Forces and Moments

$\begin{aligned} \text { Fhor0 }:= & \left(\text { FUS.Sum.Hor }- \text { FDS.Sum.Hor }+\mathrm{F}_{\text {gateH.Sum }}\right)+\left(\mathrm{F}_{\text {US.silt.Hor }}-\mathrm{F}_{\text {DS.fill.Hor }}\right) \ldots=363.8 \mathrm{kN} \\ & +\left(\mathrm{F}_{\mathrm{U}} \text { 0.Sum.Hor }\right)+\left(\mathrm{F}_{\text {anchor.Hor }}+\mathrm{F}_{\text {other.Hor.1 }}\right) \end{aligned}$	Sum of horizontal forces
$\begin{aligned} \mathrm{F}_{\text {ver0 } 0}:= & \left(\mathrm{W}_{\text {conc }}+\mathrm{W}_{\text {log.Sum }}+\mathrm{W}_{\text {slab }}+\mathrm{W}_{\text {tower }}\right)+\left(\mathrm{F}_{\text {US.Sum.Ver }}+\mathrm{F}_{\text {DS.Sum.Ver }}+\mathrm{W}_{\text {Water.Above.Sum }}\right) \ldots=2160 \mathrm{kN} \\ & +\left(\mathrm{W}_{\text {US.silt }}+\mathrm{W}_{\text {DS.fill }}+\mathrm{W}_{\text {Granular.Sum }}\right)+\left(\mathrm{F}_{\mathrm{U} 0 . S u m . V e r}\right)+\left(\mathrm{F}_{\text {anchor.Ver }}+\mathrm{F}_{\text {other.Ver. } 1}\right) \end{aligned}$	Sum of vertical forces
$\mathrm{F}_{\text {parallel0 }}:=\mathrm{Fhor}^{\text {a }} \cdot \cos (\alpha)-\mathrm{F}_{\mathrm{ver}} 0 \cdot \sin (\alpha)=363.8 \cdot \mathrm{kN} \quad$ Forces acting parallel to uncracked base	
$\mathrm{F}_{\text {perp0 }}:=\mathrm{Fhor}^{\text {h }} \cdot \sin (\alpha)+\mathrm{F}_{\mathrm{ver} 0} \cdot \cos (\alpha)=2160.0 \cdot \mathrm{kN} \quad$ Forces acting perpendicular to uncracked base	
$\begin{aligned} M_{\text {stab0 }}:= & \left(M_{\text {conc }}+M_{\log . S u m}+M_{\text {slab }}+M_{\text {tower }}\right)+\left(M_{\text {US.Sum.Ver }}+M_{D S . S u m . H o r ~}+M_{\text {DS.Sum.Ver }}+M_{\text {Water.Above.Sum }}\right. \\ & +\left(M_{\text {US.silt.Ver }}+M_{\text {DS.fill.Hor }}+M_{\text {DS.fill.Ver }}+M_{\text {Granular.Sum }}\right) \ldots \\ & +\left(M_{\text {anchor.Ver }}+M_{\text {anchor.Hor }}+M_{\text {other.Hor. }}+M_{\text {other.Ver. } 1}\right) \end{aligned}$	m) $\ldots=10047.6 \mathrm{kN} \cdot \mathrm{m}$ Sum of stabilizing moments
$M_{\text {Overturn0 }}:=($ MUS.Sum.Hor $+\mathrm{MgateH.Sum})+($ MUS.silt.Hor $)+\left(\mathrm{M}_{\text {U }} 0 . S u m\right)=2753.8 \mathrm{kN} \cdot \mathrm{m}$	Sum of overturning moments
$\mathrm{M}_{\text {net0 }}:=\mathrm{M}_{\text {Stab0 }}-\mathrm{M}_{\text {Overturn0 }}=7293.8 \mathrm{kN} \cdot \mathrm{m}$	Net resisting moment

GROUP

LC. 1 - Resultant and Bearing Stresses

$\mathrm{x}_{0}:=\frac{\mathrm{M}_{\text {net } 0}}{\mathrm{~F}_{\text {perp } 0}}=3.38 \mathrm{~m}$
$\mathrm{E}_{0}:=\frac{\mathrm{L}_{\text {incl }}}{2}-\mathrm{x}_{0}=0.6 \mathrm{~m}$

Distance of resulant from right side of base (measured parallel to base)
$\mathrm{L}_{\text {incl }}=7.95 \mathrm{~m}$
$\mathrm{M}_{\text {net } 0}=7293.8 \mathrm{kN} \cdot \mathrm{m}$
$\mathrm{F}_{\text {perp0 }}=2160.0 \mathrm{kN}$

Stress Calculations

Normal Stresses Acting on Base

Red lines indicate extent of structure, blue lines indicate middle half of base, orange lines indicate middle third of base

LC. 1 - Sliding

GROUP

LC. 1 - Cracked Base Analysis

Note: This program runs an interative analysis to determine the length of a crack along the concrete-foundation interface. The values for F.hor, F.ver, M.overturn, need to be modified for each load combination.
crackactive $:=\left\lvert\, \begin{array}{ll}0 & \text { if } L_{\text {crack } 0}=0=0 \\ 1 & \text { otherwise }\end{array}\right.$

1-Cracked Base Calculations

- Cracked Base Results
\square Store results for summary

Store (uncracked) results for Combined Analysis

Load Case 2. Usual Loading Winter Case ($D+H+S+U+I$)

LC. 2 - Summary of Forces

Deadloads (D):

$\mathrm{W}_{\text {conc }}=1567.8 \cdot \mathrm{kN}$
$\mathrm{W}_{\text {log. }}$. Win $=0$
$\mathrm{W}_{\text {slab }}=959.9 \mathrm{kN}$
$\mathrm{W}_{\text {tower }}=0$

Hydraulic (H):

FUS.Win.Hor $=130.8 \cdot \mathrm{kN}$
FUS.Win.Ver $=0 \cdot \mathrm{kN}$
FDS.Win.Hor $=0 \mathrm{kN}$
FDS.Win.Ver $=0 \mathrm{kN}$
FgateH.Win $=33.9 \mathrm{kN}$
WWater.Above. Win $=0$
$\mathrm{M}_{\mathrm{conc}}=6231.8 \cdot \mathrm{kN} \cdot \mathrm{m}$
$\mathrm{M}_{\log \cdot \mathrm{Win}}=0$
$\mathrm{M}_{\text {slab }}=3815.8 \mathrm{kN} \cdot \mathrm{m}$
$\mathrm{M}_{\text {tower }}=0$

MUS.Win.Hor $=174 \cdot \mathrm{kN} \cdot \mathrm{m}$
MUS.Win.Ver $=0 \cdot \mathrm{kN} \cdot \mathrm{m}$
MDS.Win.Hor $=0 \mathrm{kN} \cdot \mathrm{m}$
MDS.Win.Ver $=0 \mathrm{kN} \cdot \mathrm{m}$
MgateH.Win $=87.2 \mathrm{kN} \cdot \mathrm{m}$
MWater.Above. Win $=0$

Soil (S):

FUS.silt.Hor $=0 \mathrm{kN}$
$\mathrm{W}_{\text {US.silt }}=0 \mathrm{kN}$
FDS.fill.Hor $=0$
$\mathrm{W}_{\text {DS. fill }}=0$
$\mathrm{W}_{\text {Granular }} . \mathrm{Win}=0 \mathrm{kN}$
MUS.silt.Hor $=0 \mathrm{kN} \cdot \mathrm{m}$
MUS.silt.Ver $=0 \mathrm{kN} \cdot \mathrm{m}$
$M_{\text {DS.fill. }}$ Hor $=0$
$M_{\text {DS.fill.Ver }}=0$
$\mathrm{M}_{\text {Granular }}$ Win $=0 \mathrm{kN} \cdot \mathrm{m}$

Uplift (U):

FU0.Win.Hor $=0 \cdot \mathrm{kN}$
MU0.Win $=1381.2 \cdot \mathrm{kN} \cdot \mathrm{m}$

FU0.Win.Ver $=-260.6 \cdot \mathrm{kN}$

Other Forces:

Fanchor.Hor $=0$
Fanchor.Ver $=0$
$\mathrm{F}_{\text {other.Hor. } 1}=0$
$\mathrm{Manchor}_{\text {an }}$ Hor $=0$
Manchor.Ver $=0$
$\mathrm{M}_{\mathrm{oth}}$.Hor. $1=0$
$\mathrm{M}_{\mathrm{oth}}$.Ver. $1=0$
Ice (I):
Fice.usual $=239.9 \cdot \mathrm{kN}$
$\mathrm{M}_{\text {ice }}$.usual $=885.3 \cdot \mathrm{kN} \cdot \mathrm{m}$

LC. 2 - Combine Forces and Moments

```
Fhrrh: \(=(\) FUS.Win.Hor - FDS.Win.Hor + FgateH.Win \()+(\) FUS.silt.Hor - FDS.fill.Hor \() \ldots=404.6 \mathrm{kN}\)
    \(+\left(\mathrm{F}_{\mathrm{U} \text { 0.Win.Hor }}\right)+\left(\mathrm{F}_{\text {anchor.Hor }}+\mathrm{F}_{\text {other.Hor.1 }}\right)+\left(\mathrm{F}_{\text {ice. usual }}\right)\)
\(\mathrm{F}_{\mathrm{Xe} \text {, }}:=\left(\mathrm{W}_{\text {conc }}+\mathrm{W}_{\text {log. Win }}+\mathrm{W}_{\text {slab }}+\mathrm{W}_{\text {tower }}\right)+\left(\mathrm{F}_{\text {US.Win.Ver }}+\mathrm{F}_{\text {DS. Win.Ver }}+\mathrm{W}_{\text {Water.Above. Win }}\right) \ldots=2267.1 \mathrm{kN}\)
    \(+\left(\mathrm{W}_{\text {US.silt }}+\mathrm{W}_{\text {DS.fill }}+\mathrm{W}_{\text {Granular.Win }}\right)+\left(\mathrm{F}_{\mathrm{U}}\right.\).Win.Ver \()+\left(\mathrm{F}_{\text {anchor.Ver }}+\mathrm{F}_{\text {other.Ver.1 }}\right)\)
FRarallell \(=\) Fhor0 \(^{2} \cdot \cos (\alpha)-F_{\text {ver0 }} \cdot \sin (\alpha)=404.6 \cdot \mathrm{kN}\)
\(\mathrm{F}_{\text {Rerkh }}:=\mathrm{Fhor}_{\text {0 }} \cdot \sin (\alpha)+\mathrm{F}_{\mathrm{ver}} \cdot \cos (\alpha)=2267.1 \cdot \mathrm{kN}\)
\(M_{\text {stahk }}:=\left(M_{\text {conc }}+M_{\text {log.Sum }}+M_{\text {slab }}+M_{\text {tower }}\right)+\left(M_{\text {US.Win.Ver }}+M_{\text {DS. Win.Hor }}+M_{\text {DS.Win.Ver }}+M_{\text {Water.Above.Win }}\right) \ldots\)
\(\qquad\)
```

$M_{\text {MXerturnd }}:=($ MUS.Win.Hor + MgateH.Win $)+($ MUS.silt.Hor $)+\left(\mathrm{M}_{\mathrm{U} 0} . \mathrm{Win}\right)+\left(\mathrm{M}_{\text {ice. usual }}\right)=2527.7 \mathrm{kN} \cdot \mathrm{m}$
$\mathrm{M}_{\text {neth }}:=\mathrm{M}_{\text {stab0 }}-\mathrm{M}_{\text {overturn0 }}=7519.9 \mathrm{kN} \cdot \mathrm{m}$

```

\section*{LC. 2 - Resultant and Bearing Stresses}



\section*{LC. 2 - Sliding}


\section*{LC. 2 - Cracked Base Analysis}

Note: This program runs an interative analysis to determine the length of a crack along the concrete-foundation interface. The values for F.hor, F.ver, M.overturn, need to be modified for each load combination.


Determines if the cracked analysis should run.

D-Cracked Base Calculations
Cracked Base Results
- Store results for summary

Store (uncracked) results for Combined Analysis

DESIGN CALCULATIONS

\section*{Load Case 3. Unusual Loading IDF ( \(D+H_{I D F}+S+U_{I D F}\) )}

\section*{LC. 3 - Summary of Forces}

\section*{Deadloads (D):}
\(\mathrm{W}_{\text {conc }}=1567.8 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {log. }}\) IDF \(=0\)
\(\mathrm{W}_{\text {slab }}=959.9 \mathrm{kN}\)
\(\mathrm{W}_{\text {tower }}=0\)

\section*{Hydraulic (H):}

FUS.IDF.Hor \(=353.6 \cdot \mathrm{kN}\)
FUS.IDF.Ver \(=0 \cdot \mathrm{kN}\)
FDS.IDF.Hor \(=207.9 \mathrm{kN}\)
FDS.IDF.Ver \(=0 \mathrm{kN}\)
\(\mathrm{F}_{\text {gateH. }}\) IDF \(=150.5 \mathrm{kN}\)
\(\mathrm{F}_{\text {drag }}=0\)
WWater.Above. IDF \(=0\)
\(\mathrm{M}_{\text {conc }}=6231.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {log. }} \mathrm{IDF}=0\)
\(\mathrm{M}_{\text {slab }}=3815.8 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {tower }}=0\)

MUS.IDF.Hor \(=752.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MUS.IDF.Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MDS.IDF.Hor \(=348.5 \mathrm{kN} \cdot \mathrm{m}\)
MDS.IDF.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\mathrm{gateH}} \cdot \mathrm{IDF}=477.9 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\mathrm{drag}}=0\)
MWater.Above.IDF \(=0\)

\section*{Soil (S):}

FUS.silt.Hor \(=0 \mathrm{kN}\)
MUS.silt.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
WUS.silt \(=0 \mathrm{kN}\)
FDS.fill.IDF.Hor \(=0\)
\(\mathrm{W}_{\text {DS.fill. }}\) IDF \(=0\)
\(\mathrm{W}_{\text {Granular.IDF }}=0 \mathrm{kN}\)
MUS.silt.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.fill.IDF.Hor \(=0\)
\(M_{\text {DS.fill.IDF. }}\) Ver \(=0\)
\(\mathrm{M}_{\text {Granular.IDF }}=0 \mathrm{kN} \cdot \mathrm{m}\)

\section*{Uplift (U):}

> FU0.IDF.Hor \(=0 \cdot \mathrm{kN}\)
> FU0.IDF.Ver \(=-761.6 \cdot \mathrm{kN}\)
\(\mathrm{M}_{\mathrm{U} 0 . \mathrm{IDF}}=3165.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)

\section*{Other Forces:}
\begin{tabular}{|c|c|}
\hline Fanchor.Hor \(=0\) & \(\mathrm{Manchor}_{\text {a }}\) Hor \(=0\) \\
\hline Fanchor.Ver \(=0\) & Manchor.Ver \(=0\) \\
\hline Fother.Hor. \(1=0\) & \(\mathrm{M}_{\text {Other.Hor. } 1}=0\) \\
\hline \(\mathrm{Fother}_{\text {L }}\) Ver. \(1=0\) & M \({ }_{\text {other.Ver. }}\) ( \(=0\) \\
\hline
\end{tabular}

\section*{LC. 3 - Combine Forces and Moments}

```

 \(+\left(\mathrm{F}_{\mathrm{U} 0 . \mathrm{IDF} . H o r}\right)+\left(\mathrm{F}_{\text {anchor.Hor }}+\mathrm{F}_{\text {other.Hor. }}\right)\)
 $\mathrm{F}_{\mathrm{NerO}}^{\mathrm{M}}:=\left(\mathrm{W}_{\text {conc }}+\mathrm{W}_{\text {log.IDF }}+\mathrm{W}_{\text {slab }}+\mathrm{W}_{\text {tower }}\right)+\left(\mathrm{F}_{\text {US.IDF.Ver }}+\mathrm{F}_{\text {DS.IDF.Ver }}+\mathrm{W}_{\text {Water.Above.IDF }}\right) \ldots=1766.1 \mathrm{kN}$
$+\left(\mathrm{W}_{\mathrm{US} \text {.silt }}+\mathrm{W}_{\text {DS.fill.IDF }}+\mathrm{W}_{\text {Granular.IDF }}\right)+\left(\mathrm{F}_{\mathrm{U} \text { 0.IDF.Ver }}\right)+\left(\mathrm{Fanchor}\right.$.Ver $\left.+\mathrm{F}_{\text {other.Ver. }}\right)$
${ }_{\text {WRadalleld }}:=$ Fhor0 $\cdot \cos (\alpha)-\mathrm{F}_{\mathrm{ver} 0} \cdot \sin (\alpha)=296.2 \cdot \mathrm{kN}$
${ }_{\text {WharkR }} \mathrm{i}=$ Fhor0 $\cdot \sin (\alpha)+\mathrm{F}_{\mathrm{ver}} 0 \cdot \cos (\alpha)=1766.1 \cdot \mathrm{kN}$
$\mathrm{M}_{\text {stath }}:=\left(\mathrm{M}_{\text {conc }}+\mathrm{M}_{\text {log.IDF }}+\mathrm{M}_{\text {slab }}+\mathrm{M}_{\text {tower }}\right)+\left(\mathrm{M}_{\text {US.IDF.Ver }}+\mathrm{M}_{\text {DS.IDF.Hor }}+\mathrm{M}_{\text {DS.IDF.Ver }}+\mathrm{M}_{\text {Water.Above.IDF }}\right) \ldots=10396.1 \mathrm{kN} \cdot \mathrm{m}$
$+\left(M_{U S}\right.$.silt.Ver $\left.+M_{\text {DS.fill.IDF.Hor }}+M_{\text {DS. fill.IDF.Ver }}+M_{\text {Granular.IDF }}\right)$...
$+\left(\mathrm{M}_{\text {anchor.Ver }}+\mathrm{M}_{\text {anchor.Hor }}+\mathrm{M}_{\text {other.Hor. }} 1+\mathrm{M}_{\text {other.Ver. }}\right)$

```

```

$\mathrm{M}_{\text {net }}$: $=\mathrm{M}_{\text {stab0 }}-\mathrm{M}_{\text {overturn0 }}=5999.7 \mathrm{kN} \cdot \mathrm{m}$

```

GROUP

\section*{LC. 3 - Resultant and Bearing Stresses}



\section*{LC. 3 - Sliding}



\section*{LC. 3 - Cracked Base Analysis}

Note: This program runs an interative analysis to determine the length of a crack along the concrete-foundation interface. The values for F.hor, F.ver, M.overturn, need to be modified for each load combination.


1-Cracked Base Calculations

Cracked Base Results
- Store results for summary

Store (uncracked) results for Combined Analysis

\section*{Load Case 4. Unusual Loading Winter Case ( \(D+H+S+U+l\) )}

\section*{LC. 4 - Summary of Forces}

\section*{Deadloads (D):}
\(\mathrm{W}_{\text {conc }}=1567.8 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {log. }}\) Win \(=0\)
\(\mathrm{W}_{\text {slab }}=959.9 \mathrm{kN}\)
\(\mathrm{W}_{\text {tower }}=0\)
\(\mathrm{M}_{\text {conc }}=6231.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {log. Win }}=0\)
\(\mathrm{M}_{\text {slab }}=3815.8 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {tower }}=0\)

\section*{Hydraulic (H):}

FUS.Win.Hor \(=130.8 \cdot \mathrm{kN}\)
FUS.Win.Ver \(=0 \cdot \mathrm{kN}\)
MUS.Win.Hor \(=174 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MUS.Win.Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MDS.Win.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.Win.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MgateH.Win \(=87.2 \mathrm{kN} \cdot \mathrm{m}\)
MWater.Above. Win \(=0\)

\section*{Soil (S):}
\(\mathrm{F}_{\text {US.silt. }}\) Hor \(=0 \mathrm{kN}\)
WUS.silt \(=0 \mathrm{kN}\)
FDS.fill.Hor \(=0\)
\(\mathrm{W}_{\text {DS.fill }}=0\)
\(\mathrm{W}_{\text {Granular }} . \mathrm{Win}=0 \mathrm{kN}\)
MUS.silt.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MUS.silt.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.fill.Hor \(=0\)
\(M_{\text {DS.fill.Ver }}=0\)
\(\mathrm{M}_{\text {Granular }} \cdot \mathrm{Win}=0 \mathrm{kN} \cdot \mathrm{m}\)

\section*{Uplift (U):}
\(\mathrm{F}_{\mathrm{U}} 0\). Win. Hor \(=0 \cdot \mathrm{kN}\)
\(\mathrm{F}_{\mathrm{U}} 0\). Win.Ver \(=-260.6 \cdot \mathrm{kN}\)

\section*{Other Forces:}
\begin{tabular}{|c|c|}
\hline Fanchor.Hor \(=0\) & \(\mathrm{M}_{\text {anchor }}\).Hor \(=0\) \\
\hline Fanchor.Ver \(=0\) & Manchor.Ver \(=0\) \\
\hline Fother.Hor. \(1=0\) & \(\mathrm{M}_{\text {other.Hor. } 1}=0\) \\
\hline Fother.Ver. \(1=0\) & \(\mathrm{M}_{\text {other.Ver. } 1}=0\) \\
\hline Ice (1): & \\
\hline Fice \(=267.1 \cdot \mathrm{kN}\) & \(\mathrm{M}_{\text {ice }}=985.7 \cdot \mathrm{kN} \cdot \mathrm{m}\) \\
\hline
\end{tabular}

\section*{LC. 4 - Combine Forces and Moments}

```

 \(+\left(\mathrm{F}_{\mathrm{U}}\right.\).Win.Hor \()+\left(\mathrm{Fanchor}_{\text {anch }}\right.\) Hor \(\left.+\mathrm{F}_{\text {other.Hor. }}\right)+(\mathrm{Fice})\)
    ```

```

 \(+\left(\mathrm{W}_{\text {US.silt }}+\mathrm{W}_{\text {DS.fill }}+\mathrm{W}_{\text {Granular.Win }}\right)+\left(\mathrm{F}_{\mathrm{U}}\right.\).Win.Ver \()+\left(\mathrm{Fanchor}\right.\).Ver \(\left.+\mathrm{F}_{\text {other.Ver. } 1}\right)\)
 ${ }_{\text {FRakallell }}$: $=\mathrm{F}_{\mathrm{hor} 0} \cdot \cos (\alpha)-\mathrm{F}_{\mathrm{ver} 0} \cdot \sin (\alpha)=431.8 \cdot \mathrm{kN}$
${ }_{\text {Wherkh: }}=$ Fhor0 $^{2} \cdot \sin (\alpha)+\mathrm{F}_{\mathrm{ver} 0} \cdot \cos (\alpha)=2267.1 \cdot \mathrm{kN}$
$M_{\text {stabh }}:=\left(M_{\text {conc }}+M_{\text {log.Sum }}+M_{\text {slab }}+M_{\text {tower }}\right)+\left(M_{U S}\right.$.Win.Ver $\left.+M_{D S . W i n . H o r ~}+M_{D S . W i n . V e r ~}+M_{\text {Water.Above.Win }}\right) \ldots$
$+\left(M_{D S . f i l l . H o r ~}+M_{\text {DS.fill.Ver }}+M_{\text {US.silt.Ver }}+M_{\text {Granular.Win }}\right)+\left(M_{\text {anchor.Ver }}+M_{\text {anchor.Hor }}+M_{\text {other.Hor. }}+M_{\text {other.Ver. }}\right)$

```


GROUP

\section*{\(\mathrm{M}_{\mathrm{ndt}} \mathrm{A}_{\mathrm{C}}:=\mathrm{M}_{\mathrm{stab0} 0}-\mathrm{M}_{\text {overturn } 0}=7419.6 \mathrm{kN} \cdot \mathrm{m}\)}

\section*{LC. 4 - Resultant and Bearing Stresses}


\section*{Normal Stresses Acting on Base}



Red lines indicate extent of structure, blue lines indicate middle half of base, orange lines indicate middle third of base

\section*{LC. 4 - Sliding}


DESIGN CALCULATIONS

\section*{LC. 4 - Cracked Base Analysis}

Note: This program runs an interative analysis to determine the length of a crack along the concrete-foundation interface. The values for F.hor, F.ver, M.overturn, need to be modified for each load combination.
~rackactive \(:=\left\lvert\, \begin{array}{ll}0 & \text { if } L_{\text {crack }}=0 \\ 1 & \text { otherwise }\end{array}\right.\)
- Cracked Base Calculations

Cracked Base Results
- Store results for summary

Store (uncracked) results for Combined Analysis

\section*{Load Case 5. Extreme Loading Earthquake ( \(D+H+S+Q+U_{Q}\) )}

\section*{LC. 5 - Summary of Forces}

\section*{Deadloads (D):}
\(\mathrm{W}_{\text {conc }}=1567.8 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {log. Sum }}=0\)
\(\mathrm{W}_{\text {slab }}=959.9 \mathrm{kN}\)
\(\mathrm{W}_{\text {tower }}=0\)

\section*{Hydraulic (H):}

FUS.Sum.Hor \(=260.4 \cdot \mathrm{kN}\)
FUS.Sum.Ver \(=0 \cdot \mathrm{kN}\)

FDS.Sum.Hor \(=0 \mathrm{kN}\)
FDS.Sum.Ver \(=0 \mathrm{kN}\)
\(\mathrm{F}_{\text {gateH.Sum }}=103.4 \mathrm{kN}\)
\(\mathrm{W}_{\text {Water.Above.Sum }}=0\)

\section*{Soil (S):}

FUS.silt.Hor \(=0 \mathrm{kN}\)
WUS.silt \(=0 \mathrm{kN}\)
FDS.fill.Hor \(=0\)
\(\mathrm{W}_{\text {DS.fill }}=0\)
\(\mathrm{W}_{\text {Granular. }} \mathrm{EQ}=0 \mathrm{kN}\)

\section*{Uplift (U):}

FU0.Sum.Hor \(=0 \cdot \mathrm{kN} \quad\) MU0.Sum \(=1949 \cdot \mathrm{kN} \cdot \mathrm{m}\)
FU0.Sum.Ver \(=-367.7 \cdot \mathrm{kN}\)

\section*{Other Forces:}

Fanchor. \(\mathrm{Hor}=0\)
\(\mathrm{M}_{\text {anchor }}\) Hor \(=0\)
Fanchor.Ver \(=0\)
\(\mathrm{F}_{\text {other. }}\) Hor. \(1=0\)
Fother.Ver. \(1=0\)
Manchor .Ver \(=0\)
\(\mathrm{M}_{\text {other.Hor. } 1}=0\)
\(\mathrm{M}_{\text {other.Ver. } 1}=0\)
Seismic (Q):
Feq.conc.Hor \(=130.8 \mathrm{kN}\)
\(\mathrm{M}_{\mathrm{eq}} \cdot \mathrm{conc} \cdot \mathrm{Hor}=370.7 \mathrm{kN} \cdot \mathrm{m}\)

Feq.conc. Ver \(=87.2 \mathrm{kN}\)
\(\mathrm{F}_{\text {eq. }}\) log. Hor \(=0\)
\(\mathrm{F}_{\text {eq. }}\) log. \(\mathrm{Ver}=0\)
Feq.slab.Hor \(=80.1 \mathrm{kN}\)
Feq.slab.Ver \(=53.4 \mathrm{kN}\)
\(\mathrm{F}_{\text {eq. }}\).tower. \(\mathrm{Hor}=0\)
Feq.tower.Ver \(=0\)

Feq.HD.US \(=23.3 \mathrm{kN}\)
Feq.HD.gate \(=9 \mathrm{kN}\)
\(\mathrm{F}_{\text {eq.silt. }}\) Hor \(=0 \mathrm{kN}\)
\(\mathrm{Feq}_{\text {eqilt. }}\) Ver \(=0 \mathrm{kN}\)
\(\mathrm{F}_{\text {eq.fill.Hor }}=0\)
\(\mathrm{F}_{\text {eq.fill.Ver }}=0\)
Feq.Granular.Ver \(=0 \mathrm{kN}\)
Feq.Granular.Hor \(=0 \mathrm{kN}\)
Feq.Water.Above.Ver \(=0\)
Feq.Water.Above. Hor \(=0\)

Meq.conc. Ver \(=346.5 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq. }}\) log. \(\mathrm{Hor}=0\)
\(\mathrm{M}_{\mathrm{eq} \cdot \log . \text { Ver }}=0\)
\(\mathrm{M}_{\text {eq.slab. }}\) Hor \(=550.6 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{Meq}_{\text {eq.slab.Ver }}=212.2 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq.tower. }}\) Hor \(=0\)
\(\mathrm{M}_{\text {eq.tower. }}\) Ver \(=0\)
\(\mathrm{M}_{\mathrm{eq}}\).HD.US \(=52.8 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{Meq}_{\mathrm{eq}} \cdot \mathrm{HD}\).gate \(=32.1 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq.silt.Hor }}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(M_{\text {eq.silt.Ver }}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(M_{\text {eq.fill.Hor }}=0\)
\(M_{\text {eq.fill.Ver }}=0\)
Meq.Granular. Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq. }}\).Granular. \(\mathrm{Hor}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\mathrm{eq} . \text { Water.Above.Ver }}=0\)
Meq.Water.Above.Hor \(=0\)

\section*{DESIGN CALCULATIONS}

\section*{LC. 5 - Combine Forces and Moments}

```

 \(=606.9 \mathrm{kN}\)
 \(+\left(\mathrm{F}_{\mathrm{U} 0 . S u m . H o r}\right)+\left(\mathrm{F}_{\text {anchor.Hor }}+\mathrm{F}_{\text {other.Hor.1 }}\right) \ldots\)
    ```

```

FXerCh: $=\left(\mathrm{W}_{\text {conc }}+\mathrm{W}_{\text {log.Sum }}+\mathrm{W}_{\text {slab }}+\mathrm{W}_{\text {tower }}\right)+\left(\mathrm{F}_{\text {US.Sum.Ver }}+\mathrm{F}_{\text {DS.Sum.Ver }}+\mathrm{W}_{\text {Water.Above.Sum }}\right) \ldots=2019.4 \mathrm{kN}$
$+\left(\mathrm{W}_{\mathrm{US}}\right.$. silt $\left.+\mathrm{W}_{\text {DS.fill }}+\mathrm{W}_{\text {Granular.EQ }}\right)+\left(\mathrm{F}_{\mathrm{U} 0 . S u m . V e r}\right)+\left(\mathrm{F}_{\text {anchor.Ver }}+\mathrm{F}_{\text {other.Ver.1 }}\right) .$.
$+\left(-\mathrm{F}_{\text {eq.conc.Ver }}-\mathrm{F}_{\text {eq.log.Ver }}-\mathrm{F}_{\text {eq.slab.Ver }}-\mathrm{F}_{\text {eq.tower.Ver }}-\mathrm{F}_{\text {eq.silt.Ver }}-\mathrm{F}_{\text {eq.fill.Ver }}-\mathrm{F}_{\text {eq.Granular.Ver }}-\mathrm{F}_{\text {eq. }}\right.$.Water.Above.Ver $)$
FRaralleld $=$ Fhor0 $\cdot \cos (\alpha)-F_{\text {ver0 }} \cdot \sin (\alpha)=606.9 \cdot \mathrm{kN}$

```

```

$M_{\text {stabQ }}:=\left(M_{\text {conc }}+M_{l o g . S u m}+M_{\text {slab }}+M_{\text {tower }}\right)+\left(M_{U S . S u m . V e r ~}+M_{\text {DS.Sum.Hor }}+M_{D S . S u m . V e r ~}+\right.$ MWater.Above.Sum $) \ldots \quad=10047.6 \mathrm{kN} \cdot \mathrm{m}$
$+\left(M_{\text {DS.fill.Hor }}+M_{\text {DS.fill.Ver }}+M_{\text {US.silt.Ver }}+M_{\text {Granular.EQ }}\right)+\left(M_{\text {anchor.Ver }}+M_{\text {anchor.Hor }}+M_{\text {other.Hor.1 }}+M_{\text {other.Ver.1 }}\right)$

```




\(\mathrm{M}_{\text {net }}:=\mathrm{M}_{\text {stab0 }}-\mathrm{M}_{\text {Overturn0 }}=5728.9 \mathrm{kN} \cdot \mathrm{m}\)

\section*{LC. 5 - Resultant and Bearing Stresses}
\begin{tabular}{|l|l|}
\hline\(x_{0}:=\frac{M_{n e t}}{F_{\text {nerp0 }}}=2.84 \mathrm{~m}\) \\
\(L_{\text {incl }}\) & \begin{tabular}{l}
\(L_{\text {incl }}=7.95 \mathrm{~m}\) \\
\(M_{n e t}=5728.9 \mathrm{kN} \cdot \mathrm{m}\) \\
\(F_{p e r p 0}=2019.4 \mathrm{kN}\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\(\mathrm{E} 0:=\frac{\mathrm{L}_{\text {incl }}}{2}-\mathrm{x}_{0}=1.14 \mathrm{~m}\)
Fperp0 \(=2019.4 \mathrm{kN}\)

1- Stress Calculations
\(\mathrm{q}_{\max 0}=281.9 \mathrm{kPa}\)
\(q_{\min 0}=21.4 \mathrm{kPa}\)
\(\mathrm{L}_{\text {comp0 }}=7.95 \mathrm{~m}\)
\(\mathrm{L}_{\text {tens0 }}=0.00 \mathrm{~m}\)
\(\mathrm{L}_{\text {crack.eq }}:=\mathrm{L}_{\text {crack0 }}=0.00 \mathrm{~m}\)
\(\mathrm{F}_{\mathrm{CKORQO}}^{\mathrm{N}}:=\mid \mathrm{F}_{\text {perp0 }}\) if \(\mathrm{q}_{\mathrm{min} 0} \geq 0 \quad=2019428.9\)
\[
\mathrm{F}_{\text {tens }}:=\frac{\mathrm{B} \cdot \mathrm{q}_{\min 0} \cdot \mathrm{~L}_{\text {tens } 0}}{2}=0 \mathrm{kN}
\]
\(\frac{\mathrm{B} \cdot \mathrm{q}_{\max } 0 \cdot \mathrm{~L}_{\mathrm{comp}}}{2}\) otherwise
\[
\frac{\mathrm{L}_{\text {comp0 }}}{\mathrm{L}_{\text {incl }}}=100 \cdot \% \quad \frac{\mathrm{~L}_{\text {tens0 }}}{\mathrm{L}_{\text {incl }}}=0 \cdot \% \quad \frac{\mathrm{~L}_{\text {crack0 }}}{\mathrm{L}_{\text {incl }}}=0 \cdot \%
\]

GROUP

\section*{Normal Stresses Acting on Base \\  \\ Red lines indicate extent of structure, blue lines indicate middle half of base, orange lines indicate middle third of base}

\section*{LC. 5 - Sliding}


\section*{LC. 5 - Cracked Base Analysis}

Note: Iterative cracked base analysis does not occur during seismic conditions. Initial uplift pressures are assumed to be maintained even if cracking occurs, as per CDA guidelines.
- Store results for summary

Store (uncracked) results for Combined Analysis

\section*{Load Case 6. Post-Earthquake ( \(\mathrm{D}+\mathrm{H}+\mathrm{S}+\mathrm{U}_{P Q}\) L}

\section*{LC.6(U) - Uplift}

Updated uplift calculations

Crack length is set to the resulting crack length from LC.4.
\[
\begin{aligned}
& P_{\mathrm{U} . \mathrm{eq}}(\mathrm{x}):=\mathrm{P}_{\mathrm{UL}}\left(\mathrm{x}, \mathrm{~L}_{\mathrm{crack} 0}, \mathrm{P}_{\mathrm{USUL} . S u m}, \mathrm{P}_{\mathrm{DSUL}} \mathrm{Sum}\right) \\
& \text { FU0.eq }:=\int_{0}^{\mathrm{L}_{\mathrm{incl}}} \mathrm{P}_{\mathrm{U} . \mathrm{eq}}(\mathrm{x}) \cdot \mathrm{B} \mathrm{dx}=367.7 \cdot \mathrm{kN} \\
& \mathrm{MA}_{\mathrm{M}}:=\mathrm{L}_{\mathrm{incl}}-\frac{1}{\mathrm{~F}_{\mathrm{U}} 0 . \mathrm{eq}}\left(\int_{0}^{\mathrm{L}_{\mathrm{incl}}} \mathrm{P}_{\mathrm{U} . \mathrm{eq}}(\mathrm{x}) \cdot \mathrm{x} \cdot \mathrm{~B} \mathrm{dx}\right)=5.3 \mathrm{~m} \\
& \mathrm{M}_{\mathrm{U}} 0 . \mathrm{eq}:=\mathrm{F}_{\mathrm{U}} 0 . \mathrm{eq} \cdot \mathrm{MA}=1949 \cdot \mathrm{kN} \cdot \mathrm{~m} \\
& \mathrm{~F}_{\mathrm{U}} 0 . \mathrm{eq} . \mathrm{Hor}:=-\mathrm{F}_{\mathrm{U}} 0 . \mathrm{eq} \cdot \sin (\alpha)=0 \cdot \mathrm{kN} \\
& \mathrm{~F}_{\mathrm{U}} 0 . \mathrm{eq} . \operatorname{Ver}:=-\mathrm{F}_{\mathrm{U}} 0 . \mathrm{eq} \cdot \cos (\alpha)=-367.7 \cdot \mathrm{kN}
\end{aligned}
\]

\section*{Uplift Pressure Diagram (Uncracked Base)}

- Updated uplift calculations

\section*{LC. 6 - Summary of Forces}

\section*{Deadloads (D):}
\(\mathrm{W}_{\text {conc }}=1567.8 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {log. }}\).Sum \(=0\)
\(\mathrm{W}_{\text {slab }}=959.9 \mathrm{kN}\)
\(\mathrm{W}_{\text {tower }}=0\)

\section*{Hydraulic (H):}

FUS.Sum.Hor \(=260.4 \cdot \mathrm{kN}\)
FUS.Sum.Ver \(=0 \cdot \mathrm{kN}\)
FDS.Sum.Hor \(=0 \mathrm{kN}\)
FDS.Sum.Ver \(=0 \mathrm{kN}\)
FgateH.Sum \(=103.4 \mathrm{kN}\)
\(\mathrm{W}_{\text {Water.Above.Sum }}=0\)

\section*{Soil (S):}
\begin{tabular}{|c|c|}
\hline WUS.silt \(=0 \mathrm{kN}\) & MUS.silt.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\) \\
\hline FDS.fill.Hor \(=0\) & M \({ }_{\text {DS }}\).fill.Hor \(=0\) \\
\hline \(\mathrm{W}_{\text {DS.fill }}=0\) & \(M_{\text {DS.fill.Ver }}=0\) \\
\hline \(\mathrm{W}_{\text {Granular.Post.EQ }}=0 \mathrm{kN}\) & \(\mathrm{M}_{\text {Granular.Post.EQ }}=0 \mathrm{kN} \cdot \mathrm{m}\) \\
\hline \multicolumn{2}{|l|}{Uplift (U):} \\
\hline \(\mathrm{F}_{\mathrm{U} 0 . \mathrm{eq}}\). \(\mathrm{Hor}=0 \cdot \mathrm{kN}\) & \(\mathrm{M}_{\mathrm{U} 0 . \mathrm{eq}}=1949 \cdot \mathrm{kN} \cdot \mathrm{m}\) \\
\hline \(\mathrm{F}_{\text {U0 }} 0 . \mathrm{eq}\). Ver \(=-367.7 \cdot \mathrm{kN}\) & \\
\hline
\end{tabular}

\section*{Other Forces:}

Fanchor. Hor \(=0\)
\(\mathrm{Manchor}_{\text {and }}\) Hor \(=0\)
Fanchor.Ver \(=0\)
\(\mathrm{F}_{\text {other.Hor. } 1}=0\)
Fother.Ver. \(1=0\)
\(\mathrm{M}_{\text {anchor }}\).Ver \(=0\)
\(\mathrm{M}_{\text {other.Hor. } 1}=0\)
\(\mathrm{M}_{\text {other.Ver. } 1}=0\)

\section*{LC. 6 - Combine Forces and Moments}
\[
\begin{aligned}
& +\left(\mathrm{F}_{\mathrm{U} 0 . \mathrm{eq} . \text { Hor }}\right)+\left(\mathrm{Fanchor} \text {.Hor }+\mathrm{F}_{\text {other.Hor.1 }}\right) \\
& \mathrm{FXerRh}^{2}:\left(\mathrm{W}_{\text {conc }}+\mathrm{W}_{\text {log.Sum }}+\mathrm{W}_{\text {slab }}+\mathrm{W}_{\text {tower }}\right)+\left(\mathrm{F}_{\text {US.Sum.Ver }}+\mathrm{F}_{\text {DS.Sum.Ver }}+\mathrm{W}_{\text {Water.Above.Sum }}\right) \ldots=2160 \mathrm{kN} \\
& +\left(\mathrm{W}_{\text {US.silt }}+\mathrm{W}_{\text {DS.fill }}+\mathrm{W}_{\text {Granular.Post.EQ }}\right)+(\text { FU0.eq.Ver })+\left(\mathrm{Fanchor} \text {.Ver }+\mathrm{F}_{\text {other.Ver.1 }}\right) \\
& \text { FARaralleld } 0 \text { : }_{\text {A }}=\text { Fhor0 }^{2} \cdot \cos (\alpha)-\mathrm{F}_{\text {ver0 }} \cdot \sin (\alpha)=363.8 \cdot \mathrm{kN} \\
& { }_{\text {WRernh }}:=F_{\text {hor0 }} \cdot \sin (\alpha)+F_{\text {ver0 }} \cdot \cos (\alpha)=2160.0 \cdot \mathrm{kN} \\
& M_{\text {stabh }}:=\left(M_{\text {conc }}+M_{l o g . S u m}+M_{\text {slab }}+M_{\text {tower }}\right)+\left(M_{\text {US.Sum.Ver }}+M_{\text {DS.Sum. }} \text {.Hor }+M_{D S . S u m . V e r ~}+M_{\text {Water.Above.Sum }}\right) \ldots \\
& =10047.6 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
\]
\[
\begin{aligned}
& M_{\text {QXextuxn贝 }}:=(\text { MUS.Sum.Hor }+ \text { MgateH.Sum })+(\text { MUS.silt.Hor })+(\text { MU0.eq })=2753.8 \mathrm{kN} \cdot \mathrm{~m} \\
& \mathrm{M}_{\text {neth: }}:=\mathrm{M}_{\text {stab0 }}-\mathrm{M}_{\text {overturn0 }}=7293.8 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
\]

\section*{LC. 6 - Resultant and Bearing Stresses}



\section*{LC. 6 - Sliding}

\section*{DESIGN CALCULATIONS}


\section*{LC. 6 - Cracked Base Analysis}

Note: This program runs an interative analysis to determine the length of a crack along the concrete-foundation interface. The values for F.hor, \(\overline{F . v e r,}\) M.overturn, need to be modified for each load combination.
crackactive \(:=\left\lvert\, \begin{array}{ll}1 & \text { if } L_{\text {crack }}>L_{\text {crack.eq }} \\ 0 & \text { otherwise }\end{array}\right.\)
Determines if the cracked analysis should run.

1- Cracked Base Analysis

Cracked Base Results

1- Store results for summary

Store (uncracked) results for Combined Analysis

\section*{Summary of Forces/Moments}

\section*{Dead Loads (and related seismic)}
\(\mathrm{W}_{\text {conc }}=1567.8 \cdot \mathrm{kN}\)
Feq.conc. Hor \(=130.8 \mathrm{kN}\)
Feq.conc.Ver \(=87.2 \mathrm{kN}\)
\(\mathrm{W}_{\text {log. }}\) Sum \(=0\)
\(\mathrm{W}_{\text {log. }}\). Win \(=0\)
\(\mathrm{W}_{\text {log. }}\) IDF \(=0\)

Feq.log. \(\mathrm{Hor}=0\)
Feq.log.Ver \(=0\)
\(\mathrm{W}_{\text {slab }}=959.9 \mathrm{kN}\)
Feq.slab.Hor \(=80.1 \mathrm{kN}\)
Feq.slab.Ver \(=53.4 \mathrm{kN}\)
\(\mathrm{W}_{\text {tower }}=0\)
Feq.tower.Hor \(=0\)
Feq.tower.Ver \(=0\)
\(M_{\text {conc }}=6231.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq. }}\) conc. Hor \(=370.7 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq.conc. }}\) Ver \(=346.5 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {log. }}\) Sum \(=0\)
\(\mathrm{M}_{\mathrm{log}}\). Win \(=0\)
\(\mathrm{M}_{\text {log. }}\) Win \(=0\)
\(\mathrm{M}_{\mathrm{eq}} \cdot \log\). Hor \(=0\)
\(\mathrm{M}_{\mathrm{eq}} \cdot \log\). Ver \(=0\)
\(\mathrm{M}_{\text {slab }}=3815.8 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq.slab. }}\) Hor \(=550.6 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\mathrm{eq} . \mathrm{slab} . \mathrm{Ver}}=212.2 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {tower }}=0\)
\(M_{\text {eq.tower.Hor }}=0\)
Meq.tower.Ver \(=0\)

\section*{Soil Loads (and related seismic)}

FUS.silt.Hor \(=0 \mathrm{kN}\)
\(\mathrm{F}_{\text {eq. }}\) silt. \(\mathrm{Hor}=0 \mathrm{kN}\)
WUS.silt \(=0 \mathrm{kN}\)
Feq.silt.Ver \(=0 \mathrm{kN}\)
\(\mathrm{F}_{\mathrm{DS}}\).fill.Hor \(=0\)
Feq.fill.Hor \(=0\)
\(\mathrm{F}_{\text {eq.fill.Ver }}=0\)
\(\mathrm{W}_{\text {DS.fill }}=0\)
\(\mathrm{W}_{\text {Granular.Sum }}=0 \mathrm{kN}\)
Feq.Granular.Ver \(=0 \mathrm{kN}\)
Feq.Granular.Hor \(=0 \mathrm{kN}\)
MUS.silt.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\mathrm{eq}}\).silt.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MUS.silt.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\mathrm{eq} \cdot \mathrm{silt} . V e r}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {DS. fill. }}\) Hor \(=0\)
\(\mathrm{M}_{\mathrm{eq} . f i l l . H o r}=0\)
\(\mathrm{M}_{\text {eq.fill.Ver }}=0\)
\(\mathrm{M}_{\text {DS.fill.Ver }}=0\)
\(\mathrm{M}_{\text {Granular.Sum }}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq. }}\) Granular. Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq. }}\).Granular. \(\mathrm{Hor}=0 \mathrm{kN} \cdot \mathrm{m}\)

\section*{Uplift Forces}

FU0.Sum \(=367.7 \mathrm{kN}\)
MU0.Sum \(=1949 \cdot \mathrm{kN} \cdot \mathrm{m}\)
FU0.Sum.Hor \(=0 \cdot \mathrm{kN}\)
FU0.Sum.Ver \(=-367.7 \cdot \mathrm{kN}\)
\(\mathrm{F}_{\mathrm{U} 0} 0\). Win \(=260.6 \mathrm{kN}\)
\(\mathrm{M}_{\mathrm{U} 0 . W \text { in }}=1381.2 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{F}_{\mathrm{U}}\) 0.Win. Hor \(=0 \cdot \mathrm{kN}\)
FU0.Win.Ver \(=-260.6 \cdot \mathrm{kN}\)
\(\mathrm{F}_{\mathrm{U}} 0 . \mathrm{IDF}=761.6 \mathrm{kN}\)
\(\mathrm{M}_{\mathrm{U}} 0 . \mathrm{IDF}=3165.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
FU0.IDF.Hor \(=0 \cdot \mathrm{kN}\)
FU0.IDF.Ver \(=-761.6 \cdot \mathrm{kN}\)
\(F_{U 0 . e q}=367.7 \mathrm{kN}\)
\(\mathrm{M}_{\mathrm{U} 0 . \mathrm{eq}}=1949 \cdot \mathrm{kN} \cdot \mathrm{m}\)
FU0.eq. Hor \(=0 \cdot \mathrm{kN}\)
\(\mathrm{F}_{\mathrm{U}} 0\). eq. Ver \(=-367.7 \cdot \mathrm{kN}\)

Hydraulic Forces (and related seismic)

FUS.Sum.Hor \(=260.4 \cdot \mathrm{kN}\)
Feq.HD.US \(=23.3 \mathrm{kN}\)
FUS.Sum.Ver \(=0 \cdot \mathrm{kN}\)
WWater.Above.Sum \(=0\)
Feq.Water.Above.Ver \(=0\)
Feq.Water.Above. Hor \(=0\)

FUS.Win.Hor \(=130.8 \cdot \mathrm{kN}\)
FUS.Win.Ver \(=0 \cdot \mathrm{kN}\)
WWater.Above. Win \(=0\)
FUS.IDF.Hor \(=353.6 \cdot \mathrm{kN}\)
FUS.IDF.Ver \(=0 \cdot \mathrm{kN}\)
WWater.Above.IDF \(=0\)

FDS.Sum.Hor \(=0 \mathrm{kN}\)
FDS.Sum.Ver \(=0 \mathrm{kN}\)
FDS.Win.Hor \(=0 \mathrm{kN}\)
FDS.Win.Ver \(=0 \mathrm{kN}\)
FDS.IDF.Hor \(=207.9 \mathrm{kN}\)
FDS.IDF.Ver \(=0 \mathrm{kN}\)

FgateH.Sum \(=103.4 \mathrm{kN}\)
Feq.HD.gate \(=9 \mathrm{kN}\)
FgateH.Win \(=33.9 \mathrm{kN}\)
FgateH.IDF \(=150.5 \mathrm{kN}\)
\(\mathrm{F}_{\text {drag }}=0\)

\section*{Ice Loads}

Fice. \(1=139.9 \mathrm{kN}\)
Fice.gate \(=127.3 \mathrm{kN}\)
Fice \(=267.1 \mathrm{kN}\)

Fice.1.usual \(=125.6 \mathrm{kN}\)
Fice.gate. usual \(=114.3 \mathrm{kN}\)
Fice. usual \(=239.9 \mathrm{kN}\)

\section*{Other Forces:}

Fanchor.Hor \(=0\)
Fanchor.Ver \(=0\)
\(\mathrm{F}_{\text {other. }}\) Hor. \(1=0\)
Fother.Ver. \(1=0\)

MUS.Sum.Hor \(=488.7 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq. }}\) HD.US \(=52.8 \mathrm{kN} \cdot \mathrm{m}\)
MUS.Sum.Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MWater.Above.Sum \(=0\)
Meq. Water.Above.Ver \(=0\)
\(\mathrm{Meq}_{\text {eq. Water.Above. } \mathrm{Hor}}=0\)

MUS.Win.Hor \(=174 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MUS.Win.Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MWater.Above. Win \(=0\)
MUS.IDF.Hor \(=752.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MUS.IDF.Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MWater.Above.IDF \(=0\)

MDS.Sum. Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.Sum.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.Win.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.Win.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.IDF.Hor \(=348.5 \mathrm{kN} \cdot \mathrm{m}\)
MDS.IDF.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{MgateH}_{\text {g }}\) Sum \(=316.1 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq. }}\) HD.gate \(=32.1 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {gateH }}\). Win \(=87.2 \mathrm{kN} \cdot \mathrm{m}\)
MgateH.IDF \(=477.9 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {drag }}=0\)
\(\mathrm{M}_{\mathrm{ice} .1}=516.1 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {ice.gate }}=469.6 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {ice }}=985.7 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {ice. }}\). usual \(=463.6 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {ice. }}\) gate. usual \(=421.8 \mathrm{kN} \cdot \mathrm{m}\) \(\mathrm{M}_{\text {ice }}\).usual \(=885.3 \mathrm{kN} \cdot \mathrm{m}\)

\footnotetext{
Manchor .Hor \(=0\)
\(\mathrm{M}_{\text {anchor. }}\) Ver \(=0\)
\(\mathrm{M}_{\mathrm{other}}\).Hor. \(1=0\)
\(\mathrm{M}_{\text {other.Ver. } 1}=0\)
}

\section*{Results of Analysis}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { FSS } \\
& \text { (Ф.cf) }
\end{aligned}
\] & E (m) & x. 0 (m) & \begin{tabular}{l}
L.comp \\
(m)
\end{tabular} & \% of Base in Compression & \begin{tabular}{l}
L.crack \\
(m)
\end{tabular} & \begin{tabular}{l}
F.hor \\
(kN)
\end{tabular} & \begin{tabular}{l}
F.ver \\
(kN)
\end{tabular} & \begin{tabular}{l}
F.parallel \\
(kN)
\end{tabular} & \begin{tabular}{l}
F.Perp \\
(kN)
\end{tabular} & \[
\begin{aligned}
& \text { q.max } \\
& \text { (kPa) }
\end{aligned}
\] \\
\hline LC. 1 - Summer & 2.52 & 0.60 & 3.38 & 7.95 & 100\% & 0.00 & 363.8 & 2,160.0 & 363.8 & 2,160.0 & 235.4 \\
\hline LC. 2 - Winter (Usual) & 2.38 & 0.66 & 3.32 & 7.95 & 100\% & 0.00 & 404.6 & 2,267.1 & 404.6 & 2,267.1 & 254.8 \\
\hline LC. 3 - IDF & 2.53 & 0.58 & 3.40 & 7.95 & 100\% & 0.00 & 296.2 & 1,766.1 & 296.2 & 1,766.1 & 190.5 \\
\hline LC. 4 - Winter (Unusual) & 2.23 & 0.70 & 3.27 & 7.95 & 100\% & 0.00 & 431.8 & 2,267.1 & 431.8 & 2,267.1 & 260.5 \\
\hline LC. 5 - EQ & 1.41 & 1.14 & 2.84 & 7.95 & 100\% & 0.00 & 606.9 & 2,019.4 & 606.9 & 2,019.4 & 281.9 \\
\hline LC. 6 - Post - EQ & 2.52 & 0.60 & 3.38 & 7.95 & 100\% & 0.00 & 363.8 & 2,160.0 & 363.8 & 2,160.0 & 235.4 \\
\hline
\end{tabular}

\section*{Location of Resultant}


LC 1


LC 2


\section*{LC 3}

\section*{DESIGN CALCULATIONS}

DESIGN CALCULATIONS COVER SHEET
GROUP
\begin{tabular}{|l|l|l|l|l|l|}
\hline Project No. : & 17-3212-001 & Project Name : & \multicolumn{1}{l|}{ Howson Dam (South Structure) } \\
\hline File No. : & & Discipline : & \multicolumn{4}{l|}{ Structural Engineering } \\
\hline Calculation Title : & Spillway Stability Analysis Sheet (LRIA - v3.3) & Date : & Feb. 23, 2018 \\
\hline Calculation No. : & CIV-002 & Prepared by : & HS & Date : & April 20,2018 \\
\hline No. of Sheets : & & Checked by : & YF & Date : & \\
\hline Supersedes Calc. No. : & & Approved by : & & \\
\hline
\end{tabular}
Calculation Description :
The dam has been reviewed against LRIA technical bulletins

\section*{Related Design Concept :}
Stability analysis for the structures is carried out using the "Gravity Method".
Six loading cases are utilized in the analyses based on the LRIA Technical Bulletin "Structural Design and Factors of Safety (August 2011).

\section*{Reference Codes and Standards :}
1.Design of Small Dams, Third Edition, U.S. Government Printing Office, Washington, D.C. 1987.
2. Structural Design and Factors of Safety - Technical Bulletin Ontario Ministry of Natural Resources (August 2011)
3. 2009 Parks Canada Directive for Dam Safety Program of Dams and Water-Retaining Structures
ENGINEER’S SEAL
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline & & & & & & \\
\hline Rev. \# & Rev. Description & & & & & \\
\hline
\end{tabular}


\section*{Water Levels}
\(\nabla\)
Usual Summer Operating Levels Used in \(\angle C\) 1,4,5
\begin{tabular}{ll} 
WLUS.Sum \(:=310.9 \mathrm{~m}\) & \\
Usstream water level (left side) \\
WLDS.Sum \(:=306.06 \mathrm{~m}\) & \\
Downstream water level (right side)
\end{tabular}

Usual Winter Operating Levels \(\quad\) Used in \(L C 2\)
WLUS.Win : \(=309.26 \mathrm{~m}\)
WLDS.Win := 306.06m
Unusual Flood Discharge Levels
Used in LC 3
WLUS.IDF: \(=311.9 \mathrm{~m}\)
WLDS.IDF : \(=310.3 \mathrm{~m}\)

\section*{Seismic Accelerations}

\[
\begin{array}{|l|l}
\hline \lambda_{\text {Ver }}:=\frac{2}{3} \cdot \lambda_{\mathrm{Hor}}=0.056 & \begin{array}{l}
\text { Vertical component of earthquake intensity. CDA recommends a factor between } 1 / 2 \text { and } 2 / 3 \\
\text { of the horizontal acceleration (pg } 15 \text { of Seismic Hazard Considerations Technical Bulletin) }
\end{array} \\
\hline
\end{array}
\]

\section*{Structure Geometry}

\author{
Input
}

Note: Enter structure geometry as series of points on \(X-Y\) grid. Align structure so that up streamis on the left side. Structure outline is "clo sed" automatically (last point is assigned same values as first). Ensure that values of ELE.Base.L and ELE.Base.R are adjusted to correspond with the lowest upstream and downstream elevations.

\(\mathrm{L}_{\text {hor }}:=\max (\mathrm{X})-\min (\mathrm{X})=6.2 \mathrm{~m}\)
\(\alpha:=\operatorname{atan}\left(\frac{\text { ELEBase. }^{\text {R }}-\text { ELEBase.L }^{\text {Lhor }}}{\text { Lhog }}\right)=0 \cdot \operatorname{deg}\)
\(\mathrm{L}_{\text {incl }}:=\frac{\mathrm{L}_{\text {hor }}}{\cos (\alpha)}=6.2 \mathrm{~m}\)

Angle of inclination of base. Positive is counter clockwise from the horizontal in the downstream direction

Input \(X \& Y\) coordinates

\begin{tabular}{ll}
\(\omega_{\mathrm{US}}:=0 \mathrm{deg}\) & Incline of upstream face from vertical (positive number in degrees) \\
& \(\omega_{\mathrm{DS}}:=0 \mathrm{deg}\) \\
& Incline of downstream face from vertical (positive number in degrees)
\end{tabular}

\section*{Horizontal projection of base}

Inclined length of concrete-foundation interface

\section*{Variables for Combines Structure Mode}
\(\mathrm{B}_{\text {roll }}:=\mathrm{B}=9.91 \mathrm{~m}\)
Lincl.roll := \(\mathrm{L}_{\text {incl }}=6.2 \mathrm{~m}\)
\(\alpha_{\text {roll }}:=0\)
\(\Delta\) Input

D-Plot Functions



\section*{Gate/Stoplog Geometry}
\(\square\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Horizontal distance from left side \((x=0)\) to location of gate/stoplogs} \\
\hline \multicolumn{2}{|r|}{Elevation of the bottom of the gate/stoplogs} \\
\hline \multicolumn{2}{|l|}{Elevation of top of gate/stoplogs} \\
\hline Tribgate \(:=0 \cdot \mathrm{~m}\) & Tributary width of gates/logs experiencing hydrostatic/hydrodynamic/ice forces \\
\hline Wigate \(:=11.58 \cdot \mathrm{~m}-\frac{2.03+1.32}{2} \cdot \mathrm{~m}=9.91 \mathrm{~m}\) & Total width of gate/stoplogs (for calculating weight on slab/rollway) \\
\hline
\end{tabular}

\section*{Forces on Gates/Stoplogs Transferred into Piers}
\begin{tabular}{ll} 
GatesSum.Hyd \(:=0\) & If gates are present during summer operation (and earthquake), set \(=1\), otherwise set to 0 \\
GatesWin.Hyd \(:=0\) & If gates are present during winter operation, set \(=1\), otherwise set to 0 \\
GatesIDF.Hyd \(:=0\) & If gates are present during IDF, set \(=1\), otherwise set to 0
\end{tabular}

\section*{Weight of Gates/Stoplogs bearing on rollway/slab}
\begin{tabular}{ll} 
GatesSum.Weight \(:=1\) & If gates are present during summer operation (and earthquake), set \(=1\), otherwise set to 0 \\
GatesWin.Weight \(:=1\) & If gates are present during winter operation, set \(=1\), otherwise set to 0 \\
GatesIDF.Weight \(:=1\) & If gates are present during IDF, set \(=1\), otherwise set to 0
\end{tabular}

\section*{Weight of Main Structure（D）}

Weight of Stoplogs（D
風
Weight of Slab（D）－NOT APPLICABLE
\(\nabla\)
Weight of Tower（D）－NOT APPLICABLE

回
Weight of Riprap／Granular Material on Top of Section－NOT APPLICABLE

Input coordinates
（1－Calculations
Results
Upstream Hydrostatic Force（H）
Figures

1－Calculations
Downstream Hydrostatic Force（H）
風
Hydrostatic Force on Gates（H）
1－Calculations

Hydraulic Drag Force（ H ）
風
Weight of Water Above Section（H）
\(\square\) Input coordinates

\section*{Reference Coordinates of Structure}
\(\mathrm{X}_{\text {struct }}=\left(\begin{array}{c}0.000 \\ 6.200 \\ 6.200 \\ 3.590 \\ 1.390 \\ 0.000 \\ 0.000\end{array}\right) \mathrm{m} \quad \mathrm{Y}_{\text {struct }}=\left(\begin{array}{c}306.060 \\ 306.060 \\ 306.960 \\ 306.960 \\ 309.260 \\ 309.260 \\ 306.060\end{array}\right) \mathrm{m}\)
\[
\begin{aligned}
& \text { WLUS.Sum }- \text { ELETop }=1.6 \mathrm{~m} \\
& \text { WLUS.Win }- \text { ELETop }=0 \mathrm{~m} \\
& \text { WLUS.IDF }- \text { ELETop }=2.6 \mathrm{~m}
\end{aligned}
\]
\begin{tabular}{|c|}
\hline WLUS.Sum \(=310.900 \mathrm{~m}\) \\
\hline WLDS.Sum \(=306.060 \mathrm{~m}\) \\
\hline WLUS.Win \(=309.260 \mathrm{~m}\) \\
\hline WLDS.Win \(=306.060 \mathrm{~m}\) \\
\hline WLUS.IDF \(=311.900 \mathrm{~m}\) \\
\hline WLDS.IDF \(=310.300 \mathrm{~m}\) \\
\hline ELEBase.L \(=306.060 \mathrm{~m}\) \\
\hline ELEBase. \(\mathrm{R}=306.060 \mathrm{~m}\) \\
\hline \(\mathrm{ELE}_{\text {Top }}=309.260 \mathrm{~m}\) \\
\hline Lhor \(=6.200 \mathrm{~m}\) \\
\hline \(\mathrm{B}=9.905 \mathrm{~m}\) \\
\hline
\end{tabular}

Insert coordinates of shape of water above structure
Note: if the water level is below the elevation of the top of the structure, then the arrays below will automatically be set 0 and will not factor into the calculations
\(\mathrm{B}_{\text {water.Sum }}:=\mathrm{B}\)
\(\mathrm{B}_{\text {water.Win }}:=\mathrm{B}\)
X \(_{\text {water.Sum }}:=\left(\begin{array}{c}0 \\ 1.39 \\ 6.20 \\ 3.59 \\ 1.39 \\ 0 \\ 0\end{array}\right) \mathrm{m}\)
Y \(_{\text {water.Sum }}:=\left(\begin{array}{c}310.9 \\ 310.7 \\ 306.96 \\ 306.96 \\ 309.26 \\ 309.26 \\ 309.26\end{array}\right) \mathrm{m}\)
X \(_{\text {water.Win }}:=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right) \mathrm{m}\)
\(Y_{\text {water.Win }}:=\left(\begin{array}{c}309.26 \\ 309.26 \\ 307.15 \\ 307.15 \\ 0 \\ 0 \\ 0\end{array}\right) \mathrm{m}\)


Water Above Structure (Winter)

\(\mathrm{B}_{\text {water.IDF }}:=\mathrm{B}\)


\section*{USUAL LOAD CASE}

\section*{Direct ice load on structure}

IceLoad \({ }_{\text {usual }}:=75 \frac{\mathrm{kN}}{\mathrm{m}}\)
Fice.1.usual \(:=\operatorname{IceLoad}_{\text {usual }} \mathrm{B}=742.9 \cdot \mathrm{kN}\)
ELE ice \(:=\) WLUS.Win \(-0.3 \mathrm{~m}=308.96 \mathrm{~m}\)
MA: \(=\) ELE \(_{\text {ice }}-\) ELEBase \(^{\text {R }}=2.9 \mathrm{~m}\)
\(\mathrm{M}_{\mathrm{ice}} .1 . \mathrm{usual}:=\mathrm{F}_{\text {ice.1.usual }} \cdot \mathrm{MA}=2154.3 \cdot \mathrm{kN} \cdot \mathrm{m}\) Moment about right side of base

\section*{Ice load on adjacent gates/stop logs}

Note: Ice load in this section acts on the tributary gate width to be transferred into gate slots
\begin{tabular}{l} 
Fice.gate.usual \(:=|\)\begin{tabular}{l}
0 if GatesWin.Hyd \(=0\) \\
IceLoad \\
usual \(\cdot\) Tribgate otherwise
\end{tabular}
\end{tabular}\(=0 \cdot \mathrm{kN}\)

UNUSUAL LOAD CASE

\section*{Direct ice load on structure}

IceLoad :=83.5 \(\frac{\mathrm{kN}}{\mathrm{m}}\) Ice loading on structure (enter as kN/m)

Fice. \(1:=\operatorname{IceLoad} B=827.1 \cdot \mathrm{kN}\)
Force acting on the structure
\(\mathrm{M}_{\text {ice. } 1}:=\mathrm{F}_{\text {ice. } 1} \cdot \mathrm{MA}=2398.5 \cdot \mathrm{kN} \cdot \mathrm{m}\)
Moment about right side of base

\section*{Ice load on adjacent gates/stop logs}

Note: Ice load in this section acts on the tributary gate width to be transferred into gate slots
\begin{tabular}{|c|c|}
\hline Fice.gate \(:=\) & 0 if GatesWin. Hyd \(=0\) IceLoad • Tribgate otherwise \\
\hline \(\mathrm{M}_{\text {ice.gate }}\) := & Fice.gate \(\cdot \mathrm{MA}=0 \cdot \mathrm{kN} \cdot \mathrm{m}\) \\
\hline Fice \(:=\mathrm{F}_{\text {ice. }} 1\) & \(+\mathrm{F}_{\text {ice. }}\) gate \(=827.1 \mathrm{kN}\) \\
\hline \(\mathrm{M}_{\text {ice }}:=\mathrm{M}_{\text {ice }}\) & e. \(1+\mathrm{M}_{\text {ice.gate }}=2398.5 \cdot \mathrm{kN} \cdot \mathrm{m}\) \\
\hline
\end{tabular}

\section*{Seismic Forces－Hydrodynamic Forces（Q）}

回Figures
風－Calculations

\section*{Seismic Forces－Dynamic Soil Pressures（Q）}

回
Tensioned Anchors－NOT APPLICABLE
回

\section*{Other Forces－NOT APPLICABLE}

四

\section*{Load Case 1. Usual Loading Summer Case ( \(D+H+S+U\) )}

\section*{LC. 1 - Summary of Forces}

\section*{Deadloads (D):}
\(\mathrm{W}_{\text {conc }}=2631.9 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {log. }}\) Sum \(=0\)
\(\mathrm{W}_{\text {slab }}=0\)
\(\mathrm{W}_{\text {tower }}=0\)
\(\mathrm{M}_{\mathrm{conc}}=10523.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\mathrm{log} \cdot \text { Sum }}=0\)
\(\mathrm{M}_{\text {slab }}=0\)
\(\mathrm{M}_{\text {tower }}=0\)

\section*{Hydraulic (H):}

FUS.Sum.Hor \(=1007.4 \cdot \mathrm{kN}\)
MUS.Sum.Hor \(=1346.6 \cdot \mathrm{kN} \cdot \mathrm{m}\)
FUS.Sum.Ver \(=0 \cdot \mathrm{kN}\)
FDS.Sum.Hor \(=0 \mathrm{kN}\)
FDS.Sum.Ver \(=0 \mathrm{kN}\)
\(\mathrm{F}_{\text {gateH. }}\).Sum \(=0\)
\(W_{\text {Water. }}\) Above. Sum \(=836.2 \mathrm{kN}\)
MUS.Sum.Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MDS.Sum.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.Sum.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{MgateH}^{\text {gum }}=0\)
MWater.Above.Sum \(=2948.6 \mathrm{kN} \cdot \mathrm{m}\)

\section*{Soil (S):}

FUS.silt.Hor \(=0 \mathrm{kN}\)
WUS.silt \(=0 \mathrm{kN}\)
FDS.fill.Hor \(=0 \mathrm{kN}\)
\(\mathrm{W}_{\text {DS. fill }}=0 \mathrm{kN}\)
\(\mathrm{W}_{\text {Granular.Sum }}=0\)
MUS.silt.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MUS.silt.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(M_{\text {DS.fill.Hor }}=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.fill.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {Granular.Sum }}=0\)

\section*{Uplift (U):}

FU0.Sum. Hor \(=0 \cdot \mathrm{kN}\)
\(\mathrm{M}_{\mathrm{U} 0 . S u m}=6026 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{F}_{\mathrm{U}} 0 . S u m\). Ver \(=-1457.9 \cdot \mathrm{kN}\)

\section*{Other Forces:}

Fanchor. Hor \(=0\)
\(\mathrm{M}_{\text {anchor. }}\) Hor \(=0\)
Fanchor.Ver \(=0\)
Fother.Hor. \(1=0\)
\(\mathrm{M}_{\text {anchor. }}\) Ver \(=0\)
\(\mathrm{M}_{\text {other. }}\) Hor. \(1=0\)
Fother.Ver. \(1=0\)
\(\mathrm{M}_{\mathrm{other} . \text { Ver. } 1}=0\)

\section*{LC. 1 - Combine Forces and Moments}
\begin{tabular}{|c|c|}
\hline  & Sum of horizontal forces \\
\hline \[
\begin{aligned}
\mathrm{F}_{\text {ver0 }}:= & \left(\mathrm{W}_{\text {conc }}+\mathrm{W}_{\text {log.Sum }}+\mathrm{W}_{\text {Slab }}+\mathrm{W}_{\text {tower }}\right)+\left(\mathrm{F}_{\text {US.Sum.Ver }}+\mathrm{F}_{\text {DS.Sum.Ver }}+\mathrm{W}_{\text {Water.Above.Sum }}\right) \ldots=2010.2 \mathrm{kN} \\
& +\left(\mathrm{W}_{\text {US.silt }}+\mathrm{W}_{\text {DS.fill }}+\mathrm{W}_{\text {Granular.Sum }}\right)+\left(\mathrm{F}_{\mathrm{U}} 0 . S u m . V e r\right)+\left(\mathrm{F}_{\text {anchor.Ver }}+\mathrm{F}_{\text {other.Ver. } 1}\right)
\end{aligned}
\] & Sum of vertical forces \\
\hline \(\mathrm{F}_{\text {parallel0 }}:=\mathrm{F}_{\text {hor0 }} \cdot \cos (\alpha)-\mathrm{F}_{\mathrm{ver}} 0 \cdot \sin (\alpha)=1007.4 \cdot \mathrm{kN} \quad\) Forces acting parallel to uncracked base & \\
\hline \(\mathrm{F}_{\text {perp0 }}:=\mathrm{Fhor}^{\text {h }} \cdot \sin (\alpha)+\mathrm{F}_{\mathrm{ver} 0} \cdot \cos (\alpha)=2010.2 \cdot \mathrm{kN} \quad\) Forces acting perpendicular to uncracked base & \\
\hline \[
\begin{aligned}
M_{\text {stab0 }}:= & \left(M_{\text {conc }}+M_{l o g . S u m}+M_{\text {slab }}+M_{\text {tower }}\right)+\left(M_{\text {US.Sum.Ver }}+M_{D S . S u m . H o r}+M_{D S . S u m . V e r}+M_{\text {Water.Above.Sum }}\right. \\
& +\left(M_{\text {US.silt.Ver }}+M_{\text {DS.fill.Hor }}+M_{\text {DS.fill.Ver }}+M_{\text {Granular.Sum }}\right) \ldots \\
& +\left(M_{\text {anchor.Ver }}+M_{\text {anchor.Hor }}+M_{\text {other.Hor. }}+M_{\text {other.Ver. } 1}\right)
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{m}) . .=13472.3 \cdot \mathrm{kN} \cdot \mathrm{m}\) \\
Sum of stabilizing moments
\end{tabular} \\
\hline \(\mathrm{M}_{\text {Overturn0 }}:=\left(\right.\) MUS.Sum.Hor \(\left.+\mathrm{M}_{\text {gateH.Sum }}\right)+(\) MUS.silt.Hor \()+\left(\mathrm{M}_{\text {U }}\right.\).Sum \()=7372.6 \cdot \mathrm{kN} \cdot \mathrm{m}\) & Sum of overturning moments \\
\hline \(\mathrm{M}_{\text {net0 }}:=\mathrm{M}_{\text {Stab0 }} 0-\mathrm{M}_{\text {Overturn0 }}=6099.8 \cdot \mathrm{kN} \cdot \mathrm{m}\) & Net resisting moment \\
\hline
\end{tabular}

GROUP

\section*{LC. 1 - Resultant and Bearing Stresses}


Normal Stresses Acting on Base



Red lines indicate extent of structure, blue lines indicate middle half of base, orange lines indicate middle third of bast

\section*{LC. 1 - Sliding}


\section*{LC. 1 - Cracked Base Analysis}

Note: This program runs an interative analysis to determine the length of a crack along the concrete-foundation interface. The values for F.hor, F.ver, M.overturn, need to be modified for each load combination.
crackactive \(:=\left\lvert\, \begin{array}{ll}0 & \text { if } L_{\text {crack } 0}=0=0 \\ 1 & \text { otherwise }\end{array}\right.\)
\[
\text { crackactive }:=0
\]

Determines if the cracked analysis should run

No crack due to combination of sections

1-Cracked Base Calculations
- Cracked Base Results

Store results for summary

Store (uncracked) results for Combined Analysis

\section*{Load Case 2. Usual Loading Winter Case ( \(D+H+S+U+I\) )}

\section*{LC. 2 - Summary of Forces}

\section*{Deadloads (D):}
\(\mathrm{W}_{\text {conc }}=2631.9 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {log. }}\). Win \(=0\)
\(\mathrm{W}_{\text {slab }}=0\)
\(\mathrm{W}_{\text {tower }}=0\)

\section*{Hydraulic (H):}

FUS.Win.Hor \(=497.5 \cdot \mathrm{kN}\)
FUS.Win.Ver \(=0 \cdot \mathrm{kN}\)
FDS.Win.Hor \(=0 \mathrm{kN}\)
FDS.Win.Ver \(=0 \mathrm{kN}\)
FgateH.Win \(=0\)
\(W_{\text {Water. }}\) Above. Win \(=0 \mathrm{kN}\)

\section*{Soil (S):}

FUS.silt.Hor \(=0 \mathrm{kN}\)
\(\mathrm{W}_{\mathrm{US}}\).silt \(=0 \mathrm{kN}\)
FDS.fill.Hor \(=0 \mathrm{kN}\)
\(\mathrm{W}_{\text {DS. fill }}=0 \mathrm{kN}\)
\(\mathrm{W}_{\text {Granular. Win }}=0\)

\section*{Uplift (U):}

FU0.Win.Hor \(=0 \cdot \mathrm{kN}\)
FU0.Win.Ver \(=-963.9 \cdot \mathrm{kN}\)
\(\mathrm{M}_{\text {conc }}=10523.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\mathrm{log} . \text { Win }}=0\)
\(\mathrm{M}_{\text {slab }}=0\)
\(\mathrm{M}_{\text {tower }}=0\)

MUS.Win.Hor \(=530.7 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MUS.Win.Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MDS.Win.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.Win.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MgateH.Win \(=0\)
MWater. Above. Win \(=0 \mathrm{kN} \cdot \mathrm{m}\)

MUS.silt.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MUS.silt.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {DS.fill. }}\) Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(M_{\text {DS.fill.Ver }}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(M_{\text {Granular.Win }}=0\)

MU0.Win \(=3984.1 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {anchor } . \text { Hor }}=0\)
\(\mathrm{M}_{\text {anchor. } \mathrm{Ver}}=0\)
\(\mathrm{M}_{\text {other.Hor. } 1}=0\)
\(\mathrm{M}_{\text {other.Ver. } 1}=0\)
\(\mathrm{M}_{\mathrm{ice}}\).usual \(=2154.3 \cdot \mathrm{kN} \cdot \mathrm{m}\)

\section*{LC. 2 - Combine Forces and Moments}

```

 \(+\left(\mathrm{F}_{\mathrm{U}}\right.\) 0.Win.Hor \()+\left(\mathrm{F}_{\text {anchor.Hor }}+\mathrm{F}_{\text {other.Hor.1 }}\right)+\left(\mathrm{F}_{\text {ice. }}\right.\) usual \()\)
 $\mathrm{F}_{\mathrm{Xe} \mathrm{K}}:=\left(\mathrm{W}_{\text {conc }}+\mathrm{W}_{\text {log. Win }}+\mathrm{W}_{\text {slab }}+\mathrm{W}_{\text {tower }}\right)+\left(\mathrm{F}_{\text {US.Win.Ver }}+\mathrm{F}_{\text {DS. Win.Ver }}+\mathrm{W}_{\text {Water.Above.Win }}\right) \ldots=1668 \mathrm{kN}$
$+\left(\mathrm{W}_{\mathrm{US} \text {.silt }}+\mathrm{W}_{\mathrm{DS} . \text { fill }}+\mathrm{W}_{\text {Granular.Win }}\right)+\left(\mathrm{F}_{\mathrm{U} \text { O.Win.Ver }}\right)+\left(\mathrm{F}_{\text {anchor.Ver }}+\mathrm{F}_{\text {other.Ver. } 1}\right)$
FRaallell: $=$ Fhor0 $\cdot \cos (\alpha)-F_{\text {ver0 }} \cdot \sin (\alpha)=1240.4 \cdot \mathrm{kN}$
${ }_{\text {FRerkh }}:=$ Fhor0 $^{2} \cdot \sin (\alpha)+\mathrm{F}_{\mathrm{ver}} \cdot \cos (\alpha)=1668.0 \cdot \mathrm{kN}$
$M_{\text {stab贝 }}:=\left(M_{\text {conc }}+M_{l o g . S u m}+M_{\text {slab }}+M_{\text {tower }}\right)+\left(M_{\text {US.Win.Ver }}+M_{\text {DS.Win.Hor }}+M_{\text {DS.Win.Ver }}+M_{\text {Water.Above.Win }}\right) \ldots \quad=10523.8 \cdot \mathrm{kN} \cdot \mathrm{m}$
$+\left(M_{D S . f i l l . H o r ~}+M_{D S . f i l l . V e r}+M_{U S . s i l t . V e r}+M_{G r a n u l a r . W i n}\right)+\left(M_{\text {anchor.Ver }}+\mathrm{M}_{\text {anchor.Hor }}+\mathrm{M}_{\mathrm{other} . \text { Hor. } 1}+\mathrm{M}_{\mathrm{oth}}\right.$.Ver.1 $)$
$M_{\text {QXedturd }}:=($ MUS.Win.Hor + MgateH.Win $)+($ MUS.silt.Hor $)+($ MU0.Win $)+($ Mice.usual $)=6669.2 \cdot \mathrm{kN} \cdot \mathrm{m}$
$\mathrm{Mn}_{\mathrm{Mt}} \mathrm{th}:=\mathrm{M}_{\text {stab0 }}-\mathrm{M}_{\text {overturn0 }}=3854.6 \cdot \mathrm{kN} \cdot \mathrm{m}$

```

\section*{LC. 2 - Resultant and Bearing Stresses}


\section*{Normal Stresses Acting on Base}


\section*{LC. 2 - Sliding}


GROUP

\section*{LC. 2 - Cracked Base Analysis}

Note: This program runs an interative analysis to determine the length of a crack along the concrete-foundation interface. The values for F.hor, F.ver, M.overturn, need to be modified for each load combination.

crackactive: \(=0\)

Determines if the cracked analysis should run.

No crack due to combination of sections
- Cracked Base Calculations

Cracked Base Results
- Store results for summary

Store (uncracked) results for Combined Analysis

DESIGN CALCULATIONS

\section*{Load Case 3. Unusual Loading IDF ( \(\mathrm{D}+\mathrm{H}_{I D F}+\mathrm{S}+U_{I D F}\) )}

\section*{LC. 3 - Summary of Forces}

\section*{Deadloads (D):}
\(\mathrm{W}_{\text {conc }}=2631.9 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {log. }}\) IDF \(=0\)
\(\mathrm{W}_{\text {slab }}=0\)
\(\mathrm{W}_{\text {tower }}=0\)

\section*{Hydraulic (H):}

FUS.IDF.Hor \(=1318.4 \cdot \mathrm{kN}\)
MUS.IDF.Hor \(=1844.1 \cdot \mathrm{kN} \cdot \mathrm{m}\)
FUS.IDF.Ver \(=0 \cdot \mathrm{kN}\)
FDS.IDF \(\mathrm{Hor}=820.9 \mathrm{kN}\)
FDS.IDF Ver \(=0 \mathrm{kN}\)
FgateH.IDF \(=0\)
\(\mathrm{F}_{\text {drag }}=0\)
\(W_{\text {Water. }}\) Above.IDF \(=1937.6 \mathrm{kN}\)
\(\mathrm{M}_{\text {conc }}=10523.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {log. }} \cdot \mathrm{IDF}=0\)
\(\mathrm{M}_{\text {slab }}=0\)
\(\mathrm{M}_{\text {tower }}=0\)

Soil (S):
FUS.silt.Hor
WUS.silt \(=0 \mathrm{kN}\)
FDS.fill.IDF.Hor \(=0 \mathrm{kN}\)
\(\mathrm{W}_{\text {DS.fill.IDF }}=0 \mathrm{kN}\)
\(\mathrm{W}_{\text {Granular.IDF }}=0\)
MUS.silt.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MUS.silt.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.fill.IDF.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(M_{\text {DS.fill.IDF.Ver }}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {Granular.IDF }}=0\)

\section*{Uplift (U):}

FU0.IDF.Hor \(=0 \cdot \mathrm{kN}\)
MU0.IDF \(=9910.6 \cdot \mathrm{kN} \cdot \mathrm{m}\)

FU0.IDF.Ver \(=-3036.3 \cdot \mathrm{kN}\)

\section*{Other Forces:}
\begin{tabular}{|c|c|}
\hline Fanchor.Hor \(=0\) & \(\mathrm{Manchor}_{\text {a }}\) Hor \(=0\) \\
\hline Fanchor.Ver \(=0\) & Manchor.Ver \(=0\) \\
\hline Fother.Hor. \(1=0\) & \(\mathrm{M}_{\text {Other.Hor. } 1}=0\) \\
\hline \(\mathrm{Fother}_{\text {L }}\) Ver. \(1=0\) & M \({ }_{\text {other.Ver. }}\) ( \(=0\) \\
\hline
\end{tabular}

\section*{LC. 3 - Combine Forces and Moments}

```

 \(+\left(\mathrm{F}_{\mathrm{U} 0 . \mathrm{IDF} . H o r}\right)+\left(\mathrm{Fanchor}\right.\) Hor \(\left.+\mathrm{F}_{\text {other.Hor. }}\right)\)
 $\mathrm{F}_{\mathrm{NerO}}^{\mathrm{M}}:=\left(\mathrm{W}_{\text {conc }}+\mathrm{W}_{\text {log.IDF }}+\mathrm{W}_{\text {slab }}+\mathrm{W}_{\text {tower }}\right)+\left(\mathrm{F}_{\text {US.IDF.Ver }}+\mathrm{F}_{\text {DS.IDF.Ver }}+\mathrm{W}_{\text {Water.Above.IDF }}\right) \ldots=1533.2 \mathrm{kN}$
$+\left(\mathrm{W}_{\mathrm{US} . \text { silt }}+\mathrm{W}_{\mathrm{DS} \text {.fill.IDF }}+\mathrm{W}_{\text {Granular.IDF }}\right)+\left(\mathrm{F}_{\mathrm{U} \text { 0.IDF.Ver }}\right)+\left(\mathrm{F}_{\text {anchor.Ver }}+\mathrm{F}_{\text {other.Ver. }}\right)$
${ }_{\text {WRadalleld }}:=$ Fhor0 $\cdot \cos (\alpha)-\mathrm{F}_{\mathrm{ver} 0} \cdot \sin (\alpha)=497.5 \cdot \mathrm{kN}$

```

```

$\mathrm{M}_{\text {stath }}:=\left(\mathrm{M}_{\text {conc }}+\mathrm{M}_{\text {log.IDF }}+\mathrm{M}_{\text {slab }}+\mathrm{M}_{\text {tower }}\right)+\left(\mathrm{M}_{\text {US.IDF.Ver }}+\mathrm{M}_{\text {DS.IDF.Hor }}+\mathrm{M}_{\text {DS.IDF.Ver }}+\mathrm{M}_{\text {Water.Above.IDF }}\right) \ldots=17089.3 \mathrm{kN} \cdot \mathrm{m}$
$+\left(M_{U S}\right.$.silt.Ver $\left.+M_{\text {DS.fill.IDF.Hor }}+M_{\text {DS. fill.IDF.Ver }}+M_{\text {Granular.IDF }}\right)$...
$+\left(\mathrm{M}_{\text {anchor.Ver }}+\mathrm{M}_{\text {anchor.Hor }}+\mathrm{M}_{\text {other.Hor. }} 1+\mathrm{M}_{\text {other.Ver. }}\right)$
$M_{\text {MXXectuxnl }}=\left(M_{U S . I D F . H o r ~}+M_{\text {gateH.IDF }}+M_{\text {drag }}\right)+\left(M_{U S}\right.$. silt.Hor $)+\left(M_{U 0 . I D F}\right)=11754.6 \mathrm{kN} \cdot \mathrm{m}$
$\mathrm{M}_{\text {net }} \mathrm{M}_{\mathrm{h}}: \mathrm{M}_{\text {stab0 }}-\mathrm{M}_{\text {overturn }}=5334.6 \mathrm{kN} \cdot \mathrm{m}$

```

GROUP

\section*{LC. 3 - Resultant and Bearing Stresses}
\(\mathrm{x} 0:=\frac{\mathrm{M}_{\text {net } 0}}{\mathrm{~F}_{\text {perp } 0}}=3.48 \mathrm{~m}\)
\(\mathrm{E} 0:=\frac{L_{\text {incl }}}{2}-\mathrm{x}_{0}=-0.38 \mathrm{~m}\)
\(\mathrm{L}_{\text {incl }}=6.20 \mathrm{~m}\)
\(\mathrm{M}_{\text {net } 0}=5334.6 \mathrm{kN} \cdot \mathrm{m}\)
Fperp0 \(=1533.2 \mathrm{kN}\)

1-Stress Calculations
\(\mathrm{q}_{\max } 0=34.1 \mathrm{kPa}\)
\(q \min 0=15.8 \mathrm{kPa}\)
\(\mathrm{L}_{\mathrm{comp} 0}=6.20 \mathrm{~m}\)
\(L_{\text {tens }} 0=0.00 \mathrm{~m}\)
\(\mathrm{L}_{\text {crack } 0}=0.00 \mathrm{~m}\)
\[
\begin{aligned}
& \frac{\mathrm{L}_{\text {comp0 }}}{\mathrm{L}_{\text {incl }}}=100 \cdot \% \quad \frac{\mathrm{~L}_{\text {tens0 }}}{\mathrm{L}_{\text {incl }}}=0 \cdot \% \quad \frac{\mathrm{~L}_{\text {crack0 }}}{\mathrm{L}_{\text {incl }}}=0 . \%
\end{aligned}
\]

\section*{Normal Stresses Acting on Base}



\section*{LC. 3 - Sliding}
\begin{tabular}{ll}
\(\mathrm{FSS}(\theta):=\frac{\mathrm{F}_{\mathrm{comp} 0} \cdot \tan (\theta)+\mathrm{c} \cdot \mathrm{B} \cdot\left(\mathrm{L}_{\mathrm{comp} 0}+\frac{\mathrm{L}_{\text {tens0 }}}{2}\right)}{\mathrm{F}_{\text {paralle10 }}} \quad\) Define function to evaluate sliding using a range of friction angles \\
\(\mathrm{FSS}_{0}\left(\phi_{\mathrm{cf}}\right)=1.31\) & Factor of safety against sliding for specified friction angle
\end{tabular}\(\quad\)\begin{tabular}{l}
\(\phi_{\mathrm{cf}}=23 \cdot \operatorname{deg}\) \\
\(\mathrm{c}=0\) \\
\(\mathrm{~L}_{\mathrm{incl}}=6.20 \mathrm{~m}\) \\
\(\alpha=0 \cdot \operatorname{deg}\) \\
\(\mathrm{~B}=9.91 \mathrm{~m}\) \\
\hline
\end{tabular}


GROUP

\section*{LC. 3 - Cracked Base Analysis}

Note: This program runs an interative analysis to determine the length of a crack along the concrete-foundation interface. The values for F.hor, F.ver, M.overturn, need to be modified for each load combination.

crackactive \(:=0\)
Cracked Base Calculations
- Cracked Base Results
- Store results for summary
\(\square\) Store (uncracked) results for Combined Analysis

Determines if the cracked analysis should run.

\section*{No crack due to combination of sections}

\section*{Load Case 4. Unusual Loading Winter Case ( \(D+H+S+U+l\) )}

\section*{LC. 4 - Summary of Forces}

\section*{Deadloads (D):}
\(\mathrm{W}_{\text {conc }}=2631.9 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {log. }}\) Win \(=0\)
\(\mathrm{W}_{\text {slab }}=0\)
\(\mathrm{W}_{\text {tower }}=0\)
\(\mathrm{M}_{\mathrm{conc}}=10523.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {log.Win }}=0\)
\(\mathrm{M}_{\text {slab }}=0\)
\(\mathrm{M}_{\text {tower }}=0\)

\section*{Hydraulic (H):}

FUS.Win.Hor \(=497.5 \cdot \mathrm{kN}\)
FUS.Win.Ver \(=0 \cdot \mathrm{kN}\)
MUS.Win.Hor \(=530.7 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MUS.Win. Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MDS.Win.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.Win.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{MgateH}^{\text {g.Win }}=0\)
MWater.Above.Win \(=0 \mathrm{kN} \cdot \mathrm{m}\)

\section*{Soil (S):}

FUS.silt.Hor \(=0 \mathrm{kN}\)
WUS.silt \(=0 \mathrm{kN}\)
FDS.fill.Hor \(=0 \mathrm{kN}\)
\(\mathrm{W}_{\text {DS. fill }}=0 \mathrm{kN}\)
\(\mathrm{W}_{\text {Granular. }}\) Win \(=0\)
MUS.silt.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MUS.silt.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {DS.fill.Hor }}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(M_{\text {DS.fill. }}\) Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {Granular.Win }}=0\)

\section*{Uplift (U):}

> FU0.Win.Hor \(=0 \cdot \mathrm{kN}\)
> FU0.Win.Ver \(=-963.9 \cdot \mathrm{kN}\)

MU0.Win \(=3984.1 \cdot \mathrm{kN} \cdot \mathrm{m}\)

\section*{Other Forces:}
\begin{tabular}{ll} 
Fanchor.Hor \(=0\) & \(M_{\text {anchor.Hor }}=0\) \\
Fanchor.Ver \(=0\) & \(M_{\text {anchor.Ver }}=0\) \\
Fother.Hor.1 \(=0\) & \(M_{\text {other.Hor. } 1=0}\) \\
Fother.Ver.1 \(=0\) & \(M_{\text {other.Ver. } 1=0}\) \\
Ice (I): & \\
Fice \(=827.1 \cdot \mathrm{kN}\) & \(\mathrm{M}_{\text {ice }}=2398.5 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\end{tabular}

\section*{LC. 4 - Combine Forces and Moments}
```

Fhorl: $=($ FUS.Win.Hor - FDS.Win.Hor + FgateH.Win) $+($ FUS.silt.Hor - FDS.fill.Hor)..$=1324.6 \mathrm{kN}$
$+\left(\mathrm{F}_{\mathrm{U}}\right.$ 0.Win.Hor $)+\left(\mathrm{F}_{\text {anchor.Hor }}+\mathrm{F}_{\text {other.Hor. } 1}\right)+\left(\mathrm{Fice}_{\text {ice }}\right)$
$\mathrm{F}_{\mathrm{Xe}} \mathrm{Ch}:=\left(\mathrm{W}_{\text {conc }}+\mathrm{W}_{\text {log. Win }}+\mathrm{W}_{\text {slab }}+\mathrm{W}_{\text {tower }}\right)+\left(\mathrm{F}_{\text {US.Win.Ver }}+\mathrm{F}_{\text {DS. Win.Ver }}+\mathrm{W}_{\text {Water.Above. Win }}\right) \ldots=1668 \mathrm{kN}$
$+\left(\mathrm{W}_{\text {US.silt }}+\mathrm{W}_{\text {DS.fill }}+\mathrm{W}_{\text {Granular.Win }}\right)+\left(\mathrm{F}_{\mathrm{U}}\right.$.Win.Ver $)+\left(\mathrm{Fanchor}\right.$.Ver $\left.+\mathrm{F}_{\text {other.Ver.1 }}\right)$
FRarallelh:= Fhor0 $\cdot \cos (\alpha)-\mathrm{F}_{\text {ver0 }} \cdot \sin (\alpha)=1324.6 \cdot \mathrm{kN}$

```

```

$M_{\text {stabh }}:=\left(M_{\text {conc }}+M_{\text {log.Sum }}+M_{\text {slab }}+M_{\text {tower }}\right)+\left(M_{\text {US.Win.Ver }}+M_{D S . W i n . H o r ~}+M_{D S . W i n . V e r ~}+M_{\text {Water.Above.Win }}\right) \ldots$
$+\left(M_{\text {DS. fill.Hor }}+M_{\text {DS.fill.Ver }}+M_{\text {US.silt.Ver }}+M_{\text {Granular.Win }}\right)+\left(M_{\text {anchor.Ver }}+M_{\text {anchor.Hor }}+M_{\text {other.Hor. }}+M_{\text {other.Ver. }}\right)$
$M_{\text {QXerturnd }}:=($ MUS.Win.Hor + MgateH.Win $)+($ MUS.silt.Hor $)+($ MUU.Win $)+\left(M_{i c e}\right)=6913.3 \mathrm{kN} \cdot \mathrm{m}$

```

GROUP

\section*{\(\mathrm{M}_{\mathrm{ndt}} \mathrm{A}_{\mathrm{C}}:=\mathrm{M}_{\mathrm{stab0} 0}-\mathrm{M}_{\text {overturn } 0}=3610.4 \mathrm{kN} \cdot \mathrm{m}\)}

\section*{LC. 4 - Resultant and Bearing Stresses}


Normal Stresses Acting on Base



Red lines indicate extent of structure, blue lines indicate middle half of base, orange lines indicate middle third of base

\section*{LC. 4 - Sliding}


\section*{LC. 4 - Cracked Base Analysis}

Note: This program runs an interative analysis to determine the length of a crack along the concrete-foundation interface. The values for F.hor, F.ver, M.overturn, need to be modified for each load combination.
crackactive : \(=\left\lvert\, \begin{array}{ll}0 & \text { if } L_{\text {crack } 0}=0 \\ 1 \text { otherwise }\end{array}\right.\)
crackactive: \(=0\)
1-Cracked Base Calculations

Cracked Base Results

D-Store results for summary

Store (uncracked) results for Combined Analysis

\section*{Load Case 5. Extreme Loading Earthquake ( \(D+H+S+Q+U_{Q}\) )}

\section*{LC. 5 - Summary of Forces}

\section*{Deadloads (D):}
\(\mathrm{W}_{\text {conc }}=2631.9 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {log. }}\).Sum \(=0\)
\(\mathrm{W}_{\text {slab }}=0\)
\(\mathrm{W}_{\text {tower }}=0\)
Hydraulic (H):
FUS.Sum.Hor \(=1007.4 \cdot \mathrm{kN}\)
FUS.Sum.Ver \(=0 \cdot \mathrm{kN}\)
FDS.Sum.Hor \(=0 \mathrm{kN}\)
FDS.Sum.Ver \(=0 \mathrm{kN}\)
FgateH.Sum \(=0\)
\(\mathrm{W}_{\text {Water }}\).Above. Sum \(=836.2 \mathrm{kN}\)

\section*{Soil (S):}

FUS.silt.Hor \(=0 \mathrm{kN}\)
WUS.silt \(=0 \mathrm{kN}\)
FDS.fill.Hor \(=0 \mathrm{kN}\)
WDS.fill \(=0 \mathrm{kN}\)
\(\mathrm{W}_{\text {Granular. }} \mathrm{EQ}=0\)

\section*{Uplift (U):}

FU0.Sum.Hor \(=0 \cdot \mathrm{kN}\)
FU0.Sum.Ver \(=-1457.9 \cdot \mathrm{kN}\)

\section*{Other Forces:}

Fanchor. Hor \(=0\)
Fanchor.Ver \(=0\)
Fother.Hor. \(1=0\)
Fother.Ver. \(1=0\)

MU0.Sum \(=6026 \cdot \mathrm{kN} \cdot \mathrm{m}\)

Manchor .Hor \(=0\)
\(\mathrm{M}_{\mathrm{conc}}=10523.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {log. }}\) Sum \(=0\)
\(\mathrm{M}_{\text {slab }}=0\)
\(\mathrm{M}_{\text {tower }}=0\)

MUS.Sum.Hor \(=1346.6 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MUS.Sum.Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)

MDS.Sum.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.Sum.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(M_{\text {gateH.Sum }}=0\)
MWater.Above.Sum \(=2948.6 \mathrm{kN} \cdot \mathrm{m}\)

MUS.silt.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MUS.silt.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.fill.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.fill.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {Granular.EQ }}=0\)
\(\mathrm{M}_{\text {anchor. }}\) Ver \(=0\)
\(\mathrm{M}_{\text {other.Hor. } 1}=0\)
\(\mathrm{M}_{\text {other.Ver. } 1}=0\)

\section*{DESIGN CALCULATIONS}
\begin{tabular}{|c|c|}
\hline Feq.conc. \(\mathrm{Hor}=219.5 \mathrm{kN}\) & Meq.conc. \(\mathrm{Hor}=257.8 \mathrm{kN} \cdot \mathrm{m}\) \\
\hline Feq.conc. Ver \(=146.3 \mathrm{kN}\) & Meq.conc.Ver \(=585.1 \mathrm{kN} \cdot \mathrm{m}\) \\
\hline Feq.log. \(\mathrm{Hor}=0\) & \(\mathrm{Meq}_{\text {eq.log. }}\) Hor \(=0\) \\
\hline Feq.log.Ver \(=0\) & Meq.log.Ver \(=0\) \\
\hline \(\mathrm{Feq}_{\text {q. }}\) lab.Hor \(=0\) & Meq.slab.Hor \(=0\) \\
\hline \(\mathrm{F}_{\text {eq.slab.Ver }}=0\) & \(\mathrm{M}_{\text {eq.slab.Ver }}=0\) \\
\hline Feq.tower.Hor \(=0\) & Meq.tower.Hor \(=0\) \\
\hline \(\mathrm{F}_{\text {eq. }}\) tower.Ver \(=0\) & Meq.tower.Ver \(=0\) \\
\hline Feq.HD.US \(=82.5 \mathrm{kN}\) & Meq.HD.US \(=123.5 \mathrm{kN} \cdot \mathrm{m}\) \\
\hline \(\mathrm{Feq}_{\text {q. }}\) HD.gate \(=0\) & Meq.HD.gate \(=0\) \\
\hline Feq. silt. \(\mathrm{Hor}=0 \mathrm{kN}\) & Meq.silt. \(\mathrm{Hor}=0 \mathrm{kN} \cdot \mathrm{m}\) \\
\hline Feq.silt.Ver \(=0 \mathrm{kN}\) & \(\mathrm{M}_{\mathrm{eq}}\).silt.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\) \\
\hline Feq.fill.Hor \(=0 \mathrm{kN}\) & \(\mathrm{M}_{\mathrm{eq} . \mathrm{fill} . \mathrm{Hor}}=0 \mathrm{kN} \cdot \mathrm{m}\) \\
\hline Feq.fill.Ver \(=0 \mathrm{kN}\) & \(\mathrm{M}_{\text {eq.fill.Ver }}=0 \mathrm{kN} \cdot \mathrm{m}\) \\
\hline Feq.Granular.Ver \(=0\) & Meq.Granular.Ver \(=0\) \\
\hline Feq.Granular.Hor \(=0\) & Meq.Granular.Hor \(=0\) \\
\hline Feq.Water.Above.Ver \(=46.5 \mathrm{kN}\) & Meq. Water.Above.Ver \(=163.9 \mathrm{kN} \cdot \mathrm{m}\) \\
\hline Feq.Water.Above.Hor \(=69.7 \mathrm{kN}\) & Meq.Water.Above.Hor \(=191.2 \mathrm{kN} \cdot \mathrm{m}\) \\
\hline
\end{tabular}

\section*{DESIGN CALCULATIONS}

\section*{LC. 5 - Combine Forces and Moments}

\[
+\left(\mathrm{F}_{\mathrm{U} 0 . S u m . H o r}\right)+\left(\mathrm{F}_{\text {anchor.Hor }}+\mathrm{F}_{\text {other.Hor. } 1}\right) \ldots
\]
\[
+\left(\mathrm{F}_{\text {eq.conc.Hor }}+\mathrm{F}_{\text {eq.log.Hor }}+\mathrm{F}_{\text {eq.slab.Hor }}+\mathrm{F}_{\text {eq.tower.Hor }}+\mathrm{F}_{\text {eq.HD.US }}+\mathrm{F}_{\text {eq. }} \text { HD.gate }+\mathrm{F}_{\text {eq.silt.Hor }}+\mathrm{F}_{\text {eq.fill.Hor }}+\mathrm{F}_{\text {eq.Granular.Hor }}\right)
\]
```

```
FXerC: \(:\left(W_{\text {conc }}+W_{\text {log.Sum }}+W_{\text {slab }}+W_{\text {tower }}\right)+\left(F_{\text {US.Sum.Ver }}+\right.\) F DS.Sum.Ver \(\left.+W_{\text {Water.Above.Sum }}\right) \ldots=1817.3 \mathrm{kN}\)
```

FXerC: $:\left(W_{\text {conc }}+W_{\text {log.Sum }}+W_{\text {slab }}+W_{\text {tower }}\right)+\left(F_{\text {US.Sum.Ver }}+\right.$ F DS.Sum.Ver $\left.+W_{\text {Water.Above.Sum }}\right) \ldots=1817.3 \mathrm{kN}$
$+\left(\mathrm{W}_{\mathrm{US} . \text { silt }}+\mathrm{W}_{\mathrm{DS} . \text { fill }}+\mathrm{W}_{\text {Granular.EQ }}\right)+\left(\mathrm{F}_{\mathrm{U} 0 . S u m . V e r}\right)+\left(\mathrm{F}_{\text {anchor.Ver }}+\mathrm{F}_{\text {other.Ver. } 1}\right)$.
$+\left(\mathrm{W}_{\mathrm{US} . \text { silt }}+\mathrm{W}_{\mathrm{DS} . \text { fill }}+\mathrm{W}_{\text {Granular.EQ }}\right)+\left(\mathrm{F}_{\mathrm{U} 0 . S u m . V e r}\right)+\left(\mathrm{F}_{\text {anchor.Ver }}+\mathrm{F}_{\text {other.Ver. } 1}\right)$.
$+\left(-\mathrm{F}_{\text {eq.conc.Ver }}-\mathrm{F}_{\text {eq.log.Ver }}-\mathrm{F}_{\text {eq.slab.Ver }}-\mathrm{F}_{\text {eq.tower.Ver }}-\mathrm{F}_{\text {eq.silt.Ver }}-\mathrm{F}_{\text {eq.fill.Ver }}-\mathrm{F}_{\text {eq.Granular.Ver }}-\mathrm{F}_{\text {eq. }}\right.$.Water.Above.Ver $)$
$+\left(-\mathrm{F}_{\text {eq.conc.Ver }}-\mathrm{F}_{\text {eq.log.Ver }}-\mathrm{F}_{\text {eq.slab.Ver }}-\mathrm{F}_{\text {eq.tower.Ver }}-\mathrm{F}_{\text {eq.silt.Ver }}-\mathrm{F}_{\text {eq.fill.Ver }}-\mathrm{F}_{\text {eq.Granular.Ver }}-\mathrm{F}_{\text {eq. }}\right.$.Water.Above.Ver $)$
FRaralleld: $=$ Fhor0 $\cdot \cos (\alpha)-\mathrm{F}_{\text {ver0 }} \cdot \sin (\alpha)=1309.4 \cdot \mathrm{kN}$
$\mathrm{F}_{\text {Rerk }}:=$ Fhor0 $\cdot \sin (\alpha)+\mathrm{F}_{\mathrm{ver} 0} \cdot \cos (\alpha)=1817.3 \cdot \mathrm{kN}$
$M_{\text {stabh }}:=\left(M_{\text {conc }}+M_{l o g . S u m}+M_{\text {slab }}+M_{\text {tower }}\right)+\left(M_{U S . S u m . V e r ~}+M_{D S . S u m . H o r}+M_{D S . S u m . V e r}+M_{W a t e r . A b o v e . S u m ~}\right) \ldots \quad=13472.3 \mathrm{kN} \cdot \mathrm{m}$
$+\left(M_{\text {DS.fill.Hor }}+M_{\text {DS.fill.Ver }}+M_{\text {US.silt.Ver }}+M_{\text {Granular.EQ }}\right)+\left(M_{\text {anchor.Ver }}+M_{\text {anchor.Hor }}+M_{\text {other.Hor.1 }}+M_{\text {other.Ver.1 }}\right)$
$M_{\text {MXerturnd }}:=\left(\right.$ MUS.Sum.Hor + M $\left._{\text {gateH.Sum }}\right)+($ MUS.silt.Hor $)+($ MUU.Sum $) \ldots \quad=8694.2 \mathrm{kN} \cdot \mathrm{m}$

```



\(M_{\text {net }}:=M_{\text {stab0 }}-M_{\text {Overturn } 0}=4778.1 \mathrm{kN} \cdot \mathrm{m}\)

\section*{LC. 5 - Resultant and Bearing Stresses}
\(\mathrm{x} 0:=\frac{\mathrm{M}_{\text {net } 0}}{\mathrm{~F}_{\text {perp } 0}}=2.63 \mathrm{~m}\)
\(\mathrm{E}_{0}:=\frac{\mathrm{L}_{\text {incl }}}{2}-\mathrm{x}_{0}=0.47 \mathrm{~m}\)
\(\mathrm{L}_{\mathrm{incl}}=6.20 \mathrm{~m}\)
\(\mathrm{M}_{\mathrm{net} 0}=4778.1 \mathrm{kN} \cdot \mathrm{m}\)
Fperp0 \(=1817.3 \mathrm{kN}\)

\(\mathrm{L}_{\mathrm{comp}} 0=6.20 \mathrm{~m}\)
\(L_{\text {tens0 }}=0.00 \mathrm{~m}\)
\(\mathrm{L}_{\text {crack.eq }}:=\mathrm{L}_{\text {crack0 }}=0.00 \mathrm{~m}\)


\section*{ \\  \\ Red lines indicate extent of structure, blue lines indicate middle half of base, orange lines indicate middle third of base}

\section*{LC. 5 - Sliding}


\section*{LC. 5 - Cracked Base Analysis}

Note: Iterative cracked base analysis does not occur during seismic conditions. Initial uplift pressures are assumed to be maintained even if cracking occurs, as per CDA guidelines.
- Store results for summary

Store (uncracked) results for Combined Analysis

\section*{Load Case 6. Post-Earthquake ( \(\mathrm{D}+\mathrm{H}+\mathrm{S}+\mathrm{U}_{P Q}\) )}

\section*{LC.6(U) - Uplift}

1-UUpdated uplift calculations

\section*{LC. 6 - Summary of Forces}

\section*{Deadloads (D):}
\(\mathrm{W}_{\text {conc }}=2631.9 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {log. }}\) Sum \(=0\)
\(\mathrm{W}_{\text {slab }}=0\)
\(\mathrm{W}_{\text {tower }}=0\)
\(\mathrm{M}_{\text {conc }}=10523.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {log.Sum }}=0\)
\(\mathrm{M}_{\text {slab }}=0\)
\(\mathrm{M}_{\text {tower }}=0\)
Hydraulic (H):
FUS.Sum.Hor \(=1007.4 \cdot \mathrm{kN}\)
MUS.Sum.Hor \(=1346.6 \cdot \mathrm{kN} \cdot \mathrm{m}\)
FUS.Sum.Ver \(=0 \cdot \mathrm{kN}\)
MUS.Sum.Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)

MDS.Sum. \(\mathrm{Hor}=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.Sum.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(M_{\text {gateH. }}\) Sum \(=0\)
MWater.Above.Sum \(=2948.6 \mathrm{kN} \cdot \mathrm{m}\)

\section*{Soil (S):}

FUS.silt.Hor \(=0 \mathrm{kN}\)
WUS.silt \(=0 \mathrm{kN}\)
FDS.fill.Hor \(=0 \mathrm{kN}\)
\(\mathrm{W}_{\text {DS.fill }}=0 \mathrm{kN}\)
\(\mathrm{W}_{\text {Granular.Post.EQ }}=0\)

MUS.silt.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MUS.silt.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(M_{\text {DS. fill. }}\) Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(M_{\text {DS.fill.Ver }}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {Granular.Post.EQ }}=0\)

\section*{Uplift (U):}

FU0.eq.Hor \(=0 \cdot \mathrm{kN}\)
\(M_{U 0 . e q}=6026 \cdot \mathrm{kN} \cdot \mathrm{m}\)
FU0.eq.Ver \(=-1457.9 \cdot \mathrm{kN}\)

\section*{Other Forces:}

Fanchor. \(\mathrm{Hor}=0\)
\(\mathrm{M}_{\text {anchor. }}\) Hor \(=0\)
Fanchor.Ver \(=0\)
Fother.Hor. \(1=0\)
Fother.Ver. \(1=0\)
\(\mathrm{M}_{\text {anchor. }}\) Ver \(=0\)
\(\mathrm{M}_{\text {other.Hor. } 1}=0\)
\(\mathrm{M}_{\text {other.Ver. } 1}=0\)

\section*{LC. 6 - Combine Forces and Moments}
\[
\begin{aligned}
& \mathrm{Fh}_{\mathrm{M}}^{\mathrm{L}} \mathrm{~h}:=\left(\mathrm{F}_{\text {US.Sum.Hor }}-\mathrm{F}_{\text {DS.Sum.Hor }}+\mathrm{F}_{\text {gateH.Sum }}\right)+\left(\mathrm{F}_{\text {US.silt.Hor }}-\mathrm{F}_{\text {DS.fill.Hor }}\right) \ldots=1007.4 \mathrm{kN} \\
& +\left(\mathrm{F}_{\mathrm{U} 0 . \mathrm{eq} . \text { Hor }}\right)+\left(\mathrm{Fanchor} \text {.Hor }+\mathrm{F}_{\text {other.Hor.1 }}\right) \\
& \mathrm{FXerh}^{\mathrm{W}}:=\left(\mathrm{W}_{\text {conc }}+\mathrm{W}_{\text {log.Sum }}+\mathrm{W}_{\text {Slab }}+\mathrm{W}_{\text {tower }}\right)+\left(\mathrm{F}_{\text {US.Sum.Ver }}+\mathrm{F}_{\text {DS.Sum.Ver }}+\mathrm{W}_{\text {Water.Above.Sum }}\right) \ldots=2010.2 \mathrm{kN} \\
& +\left(\text { WUS.silt }+\mathrm{W}_{\text {DS.fill }}+\mathrm{W}_{\text {Granular.Post.EQ }}\right)+\left(\mathrm{F}_{\mathrm{U} 0 . e q . V e r}\right)+\left(\mathrm{F}_{\text {anchor.Ver }}+\mathrm{F}_{\text {other.Ver.1 }}\right) \\
& \mathrm{F}_{\text {Ravallel } 10:=} \text { Fhor0 } \cdot \cos (\alpha)-\mathrm{F}_{\mathrm{Ver}} \cdot \sin (\alpha)=1007.4 \cdot \mathrm{kN} \\
& { }_{\text {F }}^{\text {Rerkh }}:=\text { Fhor0 } \cdot \sin (\alpha)+\mathrm{F}_{\mathrm{ver}} 0 \cdot \cos (\alpha)=2010.2 \cdot \mathrm{kN}
\end{aligned}
\]

\section*{DESIGN CALCULATIONS}
```

Mstah贝:= (M Mconc + M Mog.Sum + M Mlab + M Mower) + (MUS.Sum.Ver + MDS.Sum.Hor + M MDS.Sum.Ver + MWater.Above.Sum) ..
+(MDS.fill.Hor + MDS.fill.Ver + MUS.silt.Ver + M Mranular.Post.EQ) + (Manchor.Ver + M Manchor.Hor + M Mother.Hor.1 + M Mother.Ver.1
MOXerturn贝:}:=(\mathrm{ MUS.Sum.Hor + MgateH.Sum })+(\mathrm{ MUS.silt.Hor })+(\mp@subsup{M}{U0.eq}{*})=7372.6\textrm{kN}\cdot\textrm{m
Mneth:= M Mstab0 - M Moverturn0}=6099.8kN\cdot

```

\section*{LC. 6 - Resultant and Bearing Stresses}



\section*{LC. 6 - Sliding}

\section*{DESIGN CALCULATIONS}


\section*{LC. 6 - Cracked Base Analysis}

Note: This program runs an interative analysis to determine the length of a crack along the concrete-foundation interface. The values for F.hor, F.ver, M.overturn, need to be modified for each load combination.
```

crackactive $:=\left\lvert\, \begin{array}{ll}1 & \text { if } L_{\text {crack }}>L_{\text {crack.eq }} \\ 0 \text { otherwise }\end{array}=0\right.$
| 0 otherwise
crackactive : $=0$
Cracked Base Analysis
\square Cracked Base Results

```
Store results for summary
\(\square\) Store (uncracked) results for Combined Analysis

\section*{Summary of Forces/Moments}

\section*{Dead Loads (and related seismic)}
\(\mathrm{W}_{\text {conc }}=2631.9 \cdot \mathrm{kN}\)
Feq.conc. Hor \(=219.5 \mathrm{kN}\)
Feq.conc.Ver \(=146.3 \mathrm{kN}\)
\(\mathrm{W}_{\text {log. }}\) Sum \(=0\)
\(\mathrm{W}_{\text {log. }}\). Win \(=0\)
\(\mathrm{W}_{\text {log. }}\) IDF \(=0\)

Feq.log. \(\mathrm{Hor}=0\)
Feq.log.Ver \(=0\)
\(\mathrm{W}_{\text {slab }}=0\)
Feq.slab.Hor \(=0\)
Feq.slab.Ver \(=0\)
\(\mathrm{W}_{\text {tower }}=0\)
Feq.tower.Hor \(=0\)
Feq.tower.Ver \(=0\)
\(\mathrm{M}_{\mathrm{conc}}=10523.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq. }}\) conc. Hor \(=257.8 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq.conc. }}\) Ver \(=585.1 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {log. Sum }}=0\)
\(\mathrm{M}_{\mathrm{log}}\). Win \(=0\)
\(\mathrm{M}_{\log }\). Win \(=0\)

Meq.log.Hor \(=0\)
\(\mathrm{M}_{\mathrm{eq}} \cdot \log . \operatorname{Ver}=0\)
\(\mathrm{M}_{\text {slab }}=0\)
Meq.slab.Hor \(=0\)
\(\mathrm{M}_{\text {eq. }}\) slab.Ver \(=0\)
\(\mathrm{M}_{\text {tower }}=0\)
\(\mathrm{M}_{\text {eq.tower.Hor }}=0\)
Meq.tower.Ver \(=0\)

\section*{Soil Loads (and related seismic)}

FUS.silt.Hor \(=0 \mathrm{kN}\)
\(\mathrm{F}_{\text {eq. }}\) silt. \(\mathrm{Hor}=0 \mathrm{kN}\)
WUS.silt \(=0 \mathrm{kN}\)
Feq.silt.Ver \(=0 \mathrm{kN}\)

FDS.fill.Hor \(=0 \mathrm{kN}\)
Feq.fill.Hor \(=0 \mathrm{kN}\)
Feq.fill.Ver \(=0 \mathrm{kN}\)
\(W_{\text {DS. fill }}=0 \mathrm{kN}\)
\(\mathrm{W}_{\text {Granular.Sum }}=0\)
Feq.Granular.Ver \(=0\)
Feq.Granular.Hor \(=0\)

\section*{Uplift Forces}

FU0.Sum \(=1457.9 \mathrm{kN}\)
MUS.silt.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\mathrm{eq}}\).silt.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MUS.silt.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\mathrm{eq} \cdot \mathrm{silt} . \text { Ver }}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {DS.fill. }}\) Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\mathrm{eq} . \mathrm{fill}} \cdot \mathrm{Hor}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\mathrm{eq} . \mathrm{fill} . V e r}=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.fill.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(M_{\text {Granular.Sum }}=0\)
\(\mathrm{M}_{\mathrm{eq} . \text { Granular. }}\) Ver \(=0\)
\(\mathrm{Meq}_{\text {eq.Granular. }}\) Hor \(=0\)

MU0.Sum \(=6026 \cdot \mathrm{kN} \cdot \mathrm{m}\)
FU0.Sum.Hor \(=0 \cdot \mathrm{kN}\)
FU0.Sum.Ver \(=-1457.9 \cdot \mathrm{kN}\)

FU0.Win \(=963.9 \mathrm{kN}\)
FU0.Win. Hor \(=0 \cdot \mathrm{kN}\)
FU0.Win.Ver \(=-963.9 \cdot \mathrm{kN}\)
\(\mathrm{F}_{\mathrm{U}} 0 . \mathrm{IDF}=3036.3 \mathrm{kN}\)
FU0.IDF.Hor \(=0 \cdot \mathrm{kN}\)
FU0.IDF.Ver \(=-3036.3 \cdot \mathrm{kN}\)
\(\mathrm{F}_{\mathrm{U} 0} . \mathrm{eq}=1457.9 \mathrm{kN}\)
\(\mathrm{F}_{\mathrm{U} 0 . \mathrm{eq} . \mathrm{Hor}}=0 \cdot \mathrm{kN}\)
\(\mathrm{F}_{\mathrm{U}}\) 0.eq.Ver \(=-1457.9 \cdot \mathrm{kN}\)

\section*{Hydraulic Forces (and related seismic)}

FUS.Sum.Hor \(=1007.4 \cdot \mathrm{kN}\)
Feq.HD.US \(=82.5 \mathrm{kN}\)
FUS.Sum.Ver \(=0 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {Water }}\).Above. Sum \(=836.2 \mathrm{kN}\)
Feq. Water.Above.Ver \(=46.5 \mathrm{kN}\)
Feq. Water.Above.Hor \(=69.7 \mathrm{kN}\)

FUS.Win.Hor \(=497.5 \cdot \mathrm{kN}\)
FUS.Win.Ver \(=0 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {Water. }}\) Above. Win \(=0 \mathrm{kN}\)
FUS.IDF.Hor \(=1318.4 \cdot \mathrm{kN}\)
FUS.IDF.Ver \(=0 \cdot \mathrm{kN}\)
WWater.Above.IDF \(=1937.6 \mathrm{kN}\)

FDS.Sum.Hor \(=0 \mathrm{kN}\)
FDS.Sum.Ver \(=0 \mathrm{kN}\)
FDS.Win.Hor \(=0 \mathrm{kN}\)
FDS.Win.Ver \(=0 \mathrm{kN}\)
FDS.IDF.Hor \(=820.9 \mathrm{kN}\)
FDS.IDF.Ver \(=0 \mathrm{kN}\)
\(\mathrm{F}_{\text {gateH. }}\) Sum \(=0\)
Feq.HD.gate \(=0\)
\(\mathrm{F}_{\text {gateH. }}\) Win \(=0\)
\(\mathrm{F}_{\text {gate }} . \mathrm{IDF}=0\)
\(\mathrm{F}_{\text {drag }}=0\)

Ice Loads
Fice. \(1=827.1 \mathrm{kN}\)
Fice.gate \(=0\)
Fice \(=827.1 \mathrm{kN}\)

Fice.1.usual \(=742.9 \mathrm{kN}\)
Fice.gate.usual \(=0\)
Fice. usual \(=742.9 \mathrm{kN}\)

\section*{Other Forces:}

Fanchor.Hor \(=0\)
Fanchor.Ver \(=0\)
\(\mathrm{F}_{\text {other.Hor. }}\) = 0
Fother.Ver. \(1=0\)

MUS.Sum.Hor \(=1346.6 \cdot \mathrm{kN} \cdot \mathrm{m}\)
Meq.HD.US \(=123.5 \mathrm{kN} \cdot \mathrm{m}\)
MUS.Sum.Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MWater.Above.Sum \(=2948.6 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq. }}\) Water.Above.Ver \(=163.9 \mathrm{kN} \cdot \mathrm{m}\)
Meq.Water.Above.Hor \(=191.2 \mathrm{kN} \cdot \mathrm{m}\)

MUS.Win.Hor \(=530.7 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MUS.Win.Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {Water. }}\) Above. Win \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MUS.IDF.Hor \(=1844.1 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MUS.IDF.Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MWater.Above. \(\mathrm{IDF}=5517.5 \mathrm{kN} \cdot \mathrm{m}\)

MDS.Sum.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.Sum.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.Win.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.Win.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.IDF.Hor \(=1048.1 \mathrm{kN} \cdot \mathrm{m}\)
MDS.IDF.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {gateH }}\). Sum \(=0\)
\(M_{\text {eq. }}\) HD.gate \(=0\)
MgateH .Win \(=0\)
MgateH.IDF \(=0\)
\(\mathrm{M}_{\text {drag }}=0\)
\(\mathrm{M}_{\text {ice } .1}=2398.5 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {ice.gate }}=0\)
\(\mathrm{M}_{\text {ice }}=2398.5 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {ice. }}\). usual \(=2154.3 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {ice. }}\).gate. usual \(=0\)
\(\mathrm{M}_{\text {ice. }}\) usual \(=2154.3 \mathrm{kN} \cdot \mathrm{m}\)

\footnotetext{
Manchor .Hor \(=0\)
\(\mathrm{M}_{\text {anchor. }}\) Ver \(=0\)
\(\mathrm{M}_{\mathrm{other}}\).Hor. \(1=0\)
\(\mathrm{M}_{\text {other.Ver. } 1}=0\)
}

\section*{Results of Analysis}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { FSS } \\
& \text { (Ф.cf) }
\end{aligned}
\] & E (m) & x. 0 (m) & L.comp (m) & \% of Base in Compression & \begin{tabular}{l}
L.crack \\
(m)
\end{tabular} & \begin{tabular}{l}
F.hor \\
(kN)
\end{tabular} & \begin{tabular}{l}
F.ver \\
(kN)
\end{tabular} & \begin{tabular}{l}
F.parallel \\
(kN)
\end{tabular} & \begin{tabular}{l}
F.Perp \\
(kN)
\end{tabular} & \[
\begin{aligned}
& \text { q.max } \\
& \text { (kPa) }
\end{aligned}
\] \\
\hline LC. 1 - Summer & 0.85 & 0.07 & 3.03 & 6.20 & 100\% & 0.00 & 1,007.4 & 2,010.2 & 1,007.4 & 2,010.2 & 34.8 \\
\hline LC. 2 - Winter (Usual) & 0.57 & 0.79 & 2.31 & 6.20 & 100\% & 0.00 & 1,240.4 & 1,668.0 & 1,240.4 & 1,668.0 & 47.9 \\
\hline LC. 3 - IDF & 1.31 & -0.38 & 3.48 & 6.20 & 100\% & 0.00 & 497.5 & 1,533.2 & 497.5 & 1,533.2 & 34.1 \\
\hline LC. 4 - Winter (Unusual) & 0.53 & 0.94 & 2.16 & 6.20 & 100\% & 0.00 & 1,324.6 & 1,668.0 & 1,324.6 & 1,668.0 & 51.7 \\
\hline LC. 5 - EQ & 0.59 & 0.47 & 2.63 & 6.20 & 100\% & 0.00 & 1,309.4 & 1,817.3 & 1,309.4 & 1,817.3 & 43.1 \\
\hline LC. 6 - Post - EQ & 0.85 & 0.07 & 3.03 & 6.20 & 100\% & 0.00 & 1,007.4 & 2,010.2 & 1,007.4 & 2,010.2 & 34.8 \\
\hline
\end{tabular}

\section*{Location of Resultant}


DESIGN CALCULATIONS


\section*{DESIGN CALCULATIONS COVER SHEET}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ G R O U P } & \multicolumn{4}{l|}{} \\
\hline Project No. : & \(17-3212-001\) & Project Name : & \multicolumn{1}{l|}{ Howson Dam (South Sluiceway) } \\
\hline File No. : & CIV-003 & Discipline : & \multicolumn{2}{l|}{ Structural Engineering } & \\
\hline Calculation Title : & Co mbined Rollway \& Pier Stability Analysis & Date : & Feb. 23, 2018 \\
\hline Calculation No. : & CIV-003 & Prepared by : & HS & Date : & April 20, 2018 \\
\hline No. of Sheets : & & Checked by : & YF & Date : & \\
\hline Supersedes Calc. No. : & & Approved by : & & \\
\hline
\end{tabular}
Calculation Description :
The dam has been reviewed against LRIA technical bulletins

\section*{Related Design Concept :}
Stability analysis for the structures is carried out using the "Gravity Method".
Six loading cases are utilized in the analyses based on the LRIA Technical Bulletin "Structural Design and Factors of Safety (August 2011).

\section*{Reference Codes and Standards:}
1.Design of Small Dams, Third Edition, U.S. Government Printing Office, Washington, D.C. 1987.
2. Structural Design and Factors of Safety - Technical Bulletin Ontario Ministry of Natural Resources (August 2011)
ENGINEER'S SEAL
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline & & & & & & \\
\hline Rev. \# & Rev. Description & & & & & \\
\hline
\end{tabular}

\section*{References}

Pier
\(\rightarrow\) Reference:P:\Projects\2017\17-3212-001\Design\Struct\HS\MathCad\S Structure\CIV-001 Howson Dam S - Pier Section-HS YF.xmcd(R)

\section*{Rollway}
\(\rightarrow\) Reference:P:\Projects\2017\17-3212-001\Design\Struct\HS\MathCad\S Structure\CIV-002 Howson Dam S - Sill Section HS YF.xmcd

\section*{Properties of Materials}

Scf: \(:=23 \cdot \operatorname{deg}\)
Friction angle of concrete/foundation interface
\(\mathrm{ft}_{\mathrm{t}}:=0 \mathrm{MPa}\)
Tensile strength at concrete/rock interface (generally set to 0). This is a negative number.
\(\mathrm{c}:=0 \mathrm{MPa}\)
Cohesion at concrete/foundation interface (generally set to 0)

\section*{Geometry of Structures}
\(\mathrm{B}_{\text {pier }}=1.67 \mathrm{~m}\)
Lincl.pier \(=7.95 \mathrm{~m}\)
\(\alpha_{\text {pier }}=0 \cdot \operatorname{deg}\)
\(B:=B\) pier \(+B_{\text {roll }}=11.6 m\)
\(\mathrm{Lincl}_{\mathrm{L}}: \frac{\mathrm{L}_{\text {incl. }} \text { pier }+\mathrm{L}_{\text {incl. }} \text { roll }}{}=7.08 \mathrm{~m}\)
\(\alpha_{\text {avg }}:=\frac{\alpha_{\text {pier }}+\alpha_{\text {roll }}}{2}=0 \cdot \operatorname{deg}\)

\section*{Load Case 1. Usual Loading Summer Case ( \(D+H+S+U\) )}

\section*{\(L C=1\)}

\section*{LC. 1 - Forces from Structures}
\begin{tabular}{|c|c|c|}
\hline Fhor.pier \({ }_{\text {LC }}=363.8 \cdot \mathrm{kN}\) & Fhor.roll LC = 1007.4 kN & Force acting in horizontal direction on structure \\
\hline \(\mathrm{FVer}_{\text {viper }} \mathrm{LCC}=2160 \cdot \mathrm{kN}\) & \(\mathrm{F}_{\text {ver.roll }} \mathrm{LC}=2010.2 \cdot \mathrm{kN}\) & Forces acting in vertical direction on structure \\
\hline \(\mathrm{F}_{\text {perp.pier }}^{\text {LC }}\) ( \(=2160 \cdot \mathrm{kN}\) & \(\mathrm{Fperp.roll}_{\mathrm{LC}}=2010.2 \cdot \mathrm{kN}\) & Force acting perpendicular to base from structure \\
\hline \(\mathrm{F}_{\text {para.pier }} \mathrm{LC}=363.8 \cdot \mathrm{kN}\) & \(\mathrm{F}_{\text {para.roll }}^{\text {LC }}\) \(=1007.4 \cdot \mathrm{kN}\) & Force acting parallel to base from structure \\
\hline \(\mathrm{L}_{\text {comp.pier }}{ }_{\text {LC }}=8 \mathrm{~m}\) & \(\mathrm{L}_{\text {comp.roll }} \mathrm{LC}=6.2 \mathrm{~m}\) & Length of base in compression \\
\hline \(\mathrm{M}_{\text {net. } \mathrm{pier}_{\mathrm{LC}}}=7293.8 \cdot \mathrm{kN} \cdot \mathrm{m}\) & \(\mathrm{M}_{\text {net.roll }} \mathrm{LC}=6099.8 \cdot \mathrm{kN} \cdot \mathrm{m}\) & Net resisting moment from structure \\
\hline
\end{tabular}

\section*{LC. 1 - Combine Forces and Moments}
\[
\mathrm{F}_{\text {Radadlel }}:=F_{\text {hor }} \cdot \cos \left(\alpha_{\text {avg }}\right)+F_{\text {ver }} \cdot \sin \left(\alpha_{\text {avg }}\right)=1371.2 \cdot \mathrm{kN}
\]
\[
F_{\text {WRRRR }}:=-F_{\text {hor }} \cdot \sin \left(\alpha_{\text {avg }}\right)+F_{\text {ver }} \cdot \cos \left(\alpha_{\text {avg }}\right)=4170.1 \cdot \mathrm{kN}
\]
\(M_{M_{n d e}}:=M_{\text {net.pier }}^{L C}+M_{\text {net.roll }}^{L C}=13393.5 \cdot \mathrm{kN} \cdot \mathrm{m}\)

\section*{LC. 1 - Resultant and Bearing Stresses}

\(\mathrm{E}:=\frac{L_{\text {incl }}}{2}-\mathrm{x}_{0}=0.33 \mathrm{~m}\)

Ecentricity of resultant (positive is to the right)

1-Stress Calculations

\[
\begin{aligned}
& \text { Ehrl: }=\text { Fhor.pier }_{\text {LC }}+\text { Fhor.roll }_{\text {LC }}=1371.2 \cdot \mathrm{kN} \\
& \mathrm{~F}_{\mathrm{wler}}:=\mathrm{F}_{\text {ver.pier }}^{\mathrm{LC}}{ }+\mathrm{F}_{\text {ver.roll }}^{\text {LC }}=4170.1 \cdot \mathrm{kN}
\end{aligned}
\]


\section*{LC. 1 - Sliding}
\[
\begin{aligned}
& \mathrm{FSS}(\theta):=\frac{\mathrm{F}_{\mathrm{comp}} \cdot \tan (\theta)+\mathrm{c} \cdot \mathrm{~B} \cdot\left(\mathrm{~L}_{\mathrm{comp}}+\frac{\mathrm{L}_{\text {tens }}}{2}\right)}{\mathrm{F}_{\text {parallel }}} \quad \text { Define function to evaluate sliding using a range of friction angles } \\
& \mathrm{FSS}\left(\phi_{\mathrm{cf}}\right)=1.29 \\
& \text { Factor of safety against sliding for specified friction angle }
\end{aligned}
\]

\section*{Load Case 2. Usual Loading Winter Case ( \(D+H+S+U+I\) )}

\section*{\(\mathrm{LC}=2\)}

\section*{LC. 2 - Forces from Structures}

\begin{tabular}{l}
\hline Fhor.roll \(_{\mathrm{LC}}=1240.4 \mathrm{kN}\) \\
\hline \(\mathrm{F}_{\text {ver.roll }}^{\mathrm{LC}}=1668 \cdot \textrm{kN}\) \\
\hline \(\mathrm{~F}_{\text {perp.roll }} \mathrm{LC}=1668 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{F}_{\text {para.roll }} \mathrm{LC}=1240.4 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{L}_{\text {comp.roll }} \mathrm{LC}=6.2 \mathrm{~m}\) \\
\hline \(\mathrm{M}_{\text {net.roll }} \mathrm{LC}=3854.6 \cdot \mathrm{kN} \cdot \mathrm{m}\) \\
\hline
\end{tabular}

Force acting in horizontal direction on structure
Forces acting in vertical direction on structure
Force acting perpendicular to base from structure
Force acting parallel to base from structure
Length of base in compression

Net resisting moment from structure

\section*{LC. 2 - Combine Forces and Moments}
\[
\begin{aligned}
& \text { Fhrt: }=\text { Fhor.pier }_{\text {LC }}+\text { Fhor.roll }_{\text {LC }}=1645 \cdot \mathrm{kN} \\
& \text { Fxel: }=\text { F }_{\text {ver.pier }}^{\text {LC }}
\end{aligned}+\mathrm{F}_{\text {ver.roll }}^{\text {LC }}=3935.1 \cdot \mathrm{kN},
\]

\section*{LC. 2 - Resultant and Bearing Stresses}
\(\mathrm{x} 0:=\frac{\mathrm{M}_{\text {net }}}{\mathrm{F}_{\text {perp }}}=2.89 \mathrm{~m}\)
\(\mathrm{E}:=\frac{\mathrm{L}_{\text {incl }}}{2}-\mathrm{x}_{0}=0.65 \mathrm{~m}\)

1 Stress Calculations


\section*{DESIGN CALCULATIONS}

Sheet: 6 of 15
GROUP
\(\frac{\mathrm{L}_{\text {comp }}}{\mathrm{L}_{\mathrm{incl}}}=100 \cdot \% \quad\) \% of Base in Compression \(\quad \frac{\mathrm{L}_{\text {tens }}}{\mathrm{L}_{\mathrm{incl}}}=0 . \% \quad\) \% of Base in Tension \(\quad \frac{\mathrm{L}_{\mathrm{crack}}}{\mathrm{L}_{\mathrm{incl}}}=0 . \% \quad \%\) of Base Cracked

\section*{Normal Stresses Acting on Base}



\section*{LC. 2 - Sliding}
\(\operatorname{FSS}(\theta):=\frac{\mathrm{F}_{\mathrm{comp}} \cdot \tan (\theta)+\mathrm{c} \cdot \mathrm{B} \cdot\left(\mathrm{L}_{\mathrm{comp}}+\frac{\mathrm{L}_{\text {tens }}}{2}\right)}{\mathrm{F}_{\text {parallel }}} \quad\) Define function to evaluate sliding using a range of friction angles
\(\operatorname{FSS}\left(\phi_{\mathrm{cf}}\right)=1.02 \quad\) Factor of safety against sliding for specified friction angle


Store results for summary

\section*{Load Case 3. Unusual Loading IDF ( \(D+H_{I D F}+S+U_{I D F}\) )}

\section*{\(\mathrm{LC}=3\)}

\section*{LC. 3 - Forces from Structures}
\begin{tabular}{l}
\hline Fhor.pier \(_{\mathrm{LC}}=296.2 \cdot \mathrm{kN}\) \\
\hline FVer.pier \(_{\mathrm{LC}}=1766.1 \cdot \mathrm{kN}\) \\
\hline Fperp.pier \(_{\mathrm{LC}}=1766.1 \cdot \mathrm{kN}\) \\
\hline Fpara.pier \(_{\mathrm{LC}}=296.2 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{L}_{\text {comp.pier }}^{\mathrm{LC}}\) \\
\\
\hline \(\mathrm{M}_{\text {net.pier }}=8 \mathrm{~m}\) \\
\hline
\end{tabular}


Force acting in horizontal direction on structure
Forces acting in vertical direction on structure
Force acting perpendicular to base from structure
Force acting parallel to base from structure
Length of base in compression

Net resisting moment from structure

\section*{LC. 3 - Combine Forces and Moments}

> Fher: \(=\) Fhor.pier \(_{\text {LC }}+\) Fhor.roll \(_{\text {LC }}=793.7 \cdot \mathrm{kN}\)
> Fwers: \(^{=}\)F ver.pier \(_{\text {LC }}+\) F \(_{\text {ver.roll }}^{\text {LC }}=3299.3 \cdot \mathrm{kN}\)
\(F_{\text {FRadalel }}:=\) Fhor \(\cdot \cos \left(\alpha_{\text {avg }}\right)+F_{\text {ver }} \cdot \sin \left(\alpha_{\text {avg }}\right)=793.7 \cdot \mathrm{kN}\)
F \(_{\text {Wheth: }}:=-\) Fhor \(_{\text {h }} \cdot \sin \left(\alpha_{\text {avg }}\right)+F_{\text {ver }} \cdot \cos \left(\alpha_{\text {avg }}\right)=3299.3 \cdot \mathrm{kN}\)


\section*{LC. 3 - Resultant and Bearing Stresses}
\(\mathrm{x} 0:=\frac{\mathrm{M}_{\text {net }}}{\mathrm{F}_{\text {perp }}}=3.44 \mathrm{~m}\)
\(\mathrm{E}:=\frac{\mathrm{L}_{\mathrm{incl}}}{2}-\mathrm{x}_{0}=0.1 \mathrm{~m}\)

Ecentricity of resultant (positive is to the right)
- Stress Calculations



\section*{LC. 3 - Sliding}
\(\mathrm{FSS}(\theta):=\frac{\mathrm{F}_{\mathrm{comp}} \cdot \tan (\theta)+\mathrm{c} \cdot \mathrm{B} \cdot\left(\mathrm{L}_{\mathrm{comp}}+\frac{\mathrm{L}_{\text {tens }}}{2}\right)}{\mathrm{F}_{\text {parallel }}}\)
Define function to evaluate sliding using a range of friction angles
Factor of safety against sliding for specified friction angle
\(\square\) Store results for summary

\section*{Load Case 4. Unusual Loading Winter Case ( \(\mathrm{D}+\mathrm{H}+\mathrm{S}+\mathrm{U}+\mathrm{I}\) )}

\section*{\(\mathrm{LC}=4\)}

LC. 4 - Forces from Structures
\begin{tabular}{|c|c|c|}
\hline Fhor.pier \({ }_{\text {LC }}=431.8 \cdot \mathrm{kN}\) & Fhor.roll \({ }_{\text {LC }}=1324.6 \mathrm{kN}\) & Force acting in horizontal direction on structure \\
\hline \(\mathrm{F}_{\text {ver.pier }} \mathrm{LC}=2267.1 \cdot \mathrm{kN}\) & \(\mathrm{F}_{\text {ver.roll }} \mathrm{LC}=1668 \cdot \mathrm{kN}\) & Forces acting in vertical direction on structure \\
\hline \(\mathrm{F}_{\text {perp.pier }} \mathrm{LC}=2267.1 \cdot \mathrm{kN}\) & \(\mathrm{F}_{\text {perp.roll }}^{\text {LC }}\) \(=1668 \cdot \mathrm{kN}\) & Force acting perpendicular to base from structure \\
\hline \(\mathrm{F}_{\text {para. }{ }^{\text {pier }}{ }_{\text {LC }}=431.8 \cdot \mathrm{kN}}\) & \(\mathrm{F}_{\text {para.roll }}^{\text {LC }}\) = \(1324.6 \cdot \mathrm{kN}\) & Force acting parallel to base from structure \\
\hline \(\mathrm{L}_{\text {comp.pier }}{ }_{\text {LC }}=8 \mathrm{~m}\) & \(\mathrm{L}_{\text {comp.roll }} \mathrm{LC}=6.2 \mathrm{~m}\) & Length of base in compression \\
\hline \(\mathrm{M}_{\text {net } \cdot \mathrm{pier}}^{\mathrm{LC}}\) \(=7419.6 \cdot \mathrm{kN} \cdot \mathrm{m}\) & \(\mathrm{M}_{\text {net.roll }} \mathrm{LC}=3610.4 \cdot \mathrm{kN} \cdot \mathrm{m}\) & Net resisting moment from structure \\
\hline
\end{tabular}

\section*{LC. 4 - Combine Forces and Moments}
\[
\mathrm{F}_{\text {Radadllel }}:=F_{\text {hor }} \cdot \cos \left(\alpha_{\text {avg }}\right)+F_{\text {ver }} \cdot \sin \left(\alpha_{\text {avg }}\right)=1756.4 \cdot \mathrm{kN}
\]
\[
\text { Fkerth }=- \text { Fhor }_{\text {h }} \cdot \sin \left(\alpha_{\text {avg }}\right)+F_{\text {ver }} \cdot \cos \left(\alpha_{\text {avg }}\right)=3935.1 \cdot \mathrm{kN}
\]
\(\mathrm{M}_{\text {net }}:=\mathrm{M}_{\text {net. }} \mathrm{pier}_{\mathrm{LC}}+\mathrm{M}_{\text {net.roll }}{ }_{\mathrm{LC}}=11030 \cdot \mathrm{kN} \cdot \mathrm{m}\)

\section*{LC. 4 - Resultant and Bearing Stresses}
\(\mathrm{x}_{\mathrm{N}}:=\frac{\mathrm{M}_{\text {net }}}{\mathrm{F}_{\text {perp }}}=2.8 \mathrm{~m}\)
\(\mathrm{E}:=\frac{L_{\text {incl }}}{2}-\mathrm{x}_{0}=0.73 \mathrm{~m}\)

Ecentricity of resultant (positive is to the right)
- Stress Calculations

\[
\begin{aligned}
& \text { Ehrl: }=\text { Fhor.pier }_{\text {LC }}+\text { Fhor.roll }_{\text {LC }}=1756.4 \cdot \mathrm{kN} \\
& \mathrm{~F}_{\mathrm{NXer}}:=\mathrm{F}_{\text {ver.pier }}^{\mathrm{LC}}{ }+\mathrm{F}_{\text {ver.roll }}^{\text {LC }}=3935.1 \cdot \mathrm{kN}
\end{aligned}
\]


\section*{LC. 4 - Sliding}
\[
\begin{aligned}
& \mathrm{FSS}(\theta):=\frac{\mathrm{F}}{\mathrm{~F} \text { comp } \cdot \tan (\theta)+\mathrm{c} \cdot \mathrm{~B} \cdot\left(\mathrm{~L}_{\mathrm{comp}}+\frac{L_{\text {lens }}}{2}\right)} \\
& \mathrm{FSS}\left(\phi_{\mathrm{cf}}\right)=0.95
\end{aligned}
\]

Store results for summary

DESIGN CALCULATIONS

\section*{Load Case 5. Extreme Loading Earthquake ( \(D+H+S+Q+U_{Q}\) )}

\section*{\(L C=5\)}

LC. 5 - Forces from Structures
\begin{tabular}{l}
\hline Fhor.pier \(_{\mathrm{LC}}=606.9 \cdot \mathrm{kN}\) \\
\hline FVer.pier \(_{\mathrm{LC}}=2019.4 \cdot \mathrm{kN}\) \\
\hline Fperp.pier \(_{\mathrm{LC}}=2019.4 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{Fpara.pier}_{\mathrm{LC}}=606.9 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{L}_{\text {comp. }} \mathrm{pier}_{\mathrm{LC}}=8 \mathrm{~m}\) \\
\hline \(\mathrm{M}_{\text {net.pier }}^{\mathrm{LC}}\) \\
\(=5728.9 \cdot \mathrm{kN} \cdot \mathrm{m}\) \\
\hline
\end{tabular}


Force acting in horizontal direction on structure
Forces acting in vertical direction on structure
Force acting perpendicular to base from structure
Force acting parallel to base from structure
Length of base in compression

Net resisting moment from structure

\section*{LC. 5 - Combine Forces and Moments}
\[
\begin{aligned}
& \text { Fhor: }=\text { Fhor.pier }_{\text {LC }}+\text { Fhor.roll }_{\text {LC }}=1916.3 \cdot \mathrm{kN} \\
& \mathrm{~F}_{\mathrm{NXer}}:=\mathrm{F}_{\text {ver.pier }}^{\mathrm{LC}}{ }+\mathrm{F}_{\text {ver.roll }}^{\text {LC }}=3836.8 \cdot \mathrm{kN}
\end{aligned}
\]
\(\mathrm{F}_{\text {Warallel }: ~}=\mathrm{F}_{\text {hor }} \cdot \cos \left(\alpha_{\text {avg }}\right)+\mathrm{F}_{\text {ver }} \cdot \sin \left(\alpha_{\text {avg }}\right)=1916.3 \cdot \mathrm{kN}\)
F \(_{\text {Whetri }}:=-\) Fhor \(_{\text {h }} \cdot \sin \left(\alpha_{\text {avg }}\right)+\mathrm{F}_{\text {ver }} \cdot \cos \left(\alpha_{\text {avg }}\right)=3836.8 \cdot \mathrm{kN}\)
\(M_{M_{n d e}}:=M_{\text {net.pier }}^{L C}+M_{\text {net.roll }}^{L C}=10507.1 \cdot \mathrm{kN} \cdot \mathrm{m}\)

\section*{LC. 5 - Resultant and Bearing Stresses}
\(\mathrm{x} 0:=\frac{\mathrm{M}_{\text {net }}}{\mathrm{F}_{\text {perp }}}=2.74 \mathrm{~m}\)
\(\mathrm{E}:=\frac{\mathrm{L}_{\text {incl }}}{2}-\mathrm{x}_{0}=0.8 \mathrm{~m}\)

Stress Calculations



\section*{LC. 5 - Sliding}
\(\underset{\operatorname{FSS}(\theta)}{\operatorname{FSS}\left(\phi_{\mathrm{cf}}\right)=0.85} \quad\) Ferine function to evaluate sliding using a range of friction angles


Store results for summary

\section*{Load Case 6. Extreme Loading Earthquake ( \(\mathrm{D}+\mathrm{H}+\mathrm{S}+\mathrm{Q}+\mathrm{U}_{Q}\) )}

\section*{\(\mathrm{LC}:=6\)}

LC. 6 - Forces from Structures

\begin{tabular}{l}
\hline Fhor.roll \(_{\mathrm{LC}}=1007.4 \mathrm{kN}\) \\
\hline \(\mathrm{F}_{\text {ver.roll }}^{\mathrm{LC}}\) \\
\(=2010.2 \cdot \mathrm{kN}\) \\
\hline Fperp.roll \(_{\mathrm{LC}}=2010.2 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{F}_{\text {para.roll }}^{\mathrm{LC}}\) \\
\(=1007.4 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{L}_{\text {comp.roll }} \mathrm{LC}=6.2 \mathrm{~m}\) \\
\hline \(\mathrm{M}_{\text {net.roll }} \mathrm{LC}=6099.8 \cdot \mathrm{kN} \cdot \mathrm{m}\) \\
\hline
\end{tabular}

Force acting in horizontal direction on structure
Forces acting in vertical direction on structure
Force acting perpendicular to base from structure
Force acting parallel to base from structure
Length of base in compression
Net resisting moment from structure

\section*{LC. 6 - Combine Forces and Moments}
```

Fhor: $=$ Fhor.pier $_{\text {LC }}+$ Fhor.roll $_{\text {LC }}=1371.2 \cdot \mathrm{kN}$
$\mathrm{F}_{\mathrm{wler}}:=\mathrm{F}_{\text {ver.pier }}^{\text {LC }}+F_{\text {ver.roll }}^{\text {LC }}=4170.1 \cdot \mathrm{kN}$
$\mathrm{F}_{\text {warallell }}:=\mathrm{F}_{\text {hor }} \cdot \cos \left(\alpha_{\text {avg }}\right)+\mathrm{F}_{\text {ver }} \cdot \sin \left(\alpha_{\text {avg }}\right)=1371.2 \cdot \mathrm{kN}$
F $_{\text {Wherth }}:=-F_{\text {hor }} \cdot \sin \left(\alpha_{\text {avg }}\right)+F_{\text {ver }} \cdot \cos \left(\alpha_{\text {avg }}\right)=4170.1 \cdot \mathrm{kN}$

```


\section*{LC. 6 - Resultant and Bearing Stresses}

(- Stress Calculations


\section*{Normal Stresses Acting on Base}


Ecentricity of resultant (positive is to the right)

\section*{Distance of resulant from right side of base (measured parallel to base)}
\(\begin{array}{llll}0 & 2 & 4 & 6\end{array}\)

Location of Resultant


\section*{LC. 6 - Sliding}
\(\underset{\mathrm{MSS}}{\mathrm{FS}}(\theta):=\frac{\mathrm{F}_{\text {comp }} \cdot \tan (\theta)+\mathrm{c} \cdot \mathrm{B} \cdot\left(\mathrm{L}_{\text {comp }}+\frac{\mathrm{L}_{\text {tens }}}{2}\right)}{\mathrm{F}_{\text {parallel }}} \quad\) Define function to evaluate sliding using a range of friction angles

\section*{\(\operatorname{FSS}\left(\phi_{\mathrm{cf}}\right)=1.29\)}

Factor of safety against sliding for specified friction angle


Friction Angle

Store results for summary

\section*{Results of Analysis}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { FSS } \\
& \text { (Ф.cf) }
\end{aligned}
\] & E (m) & x .0 (m) & L.comp (m) & \% of Base in Compression & L.crack
(m) & \begin{tabular}{l}
F.hor \\
(kN)
\end{tabular} & \begin{tabular}{l}
F.ver \\
(kN)
\end{tabular} & \begin{tabular}{l}
F.parallel \\
(kN)
\end{tabular} & \begin{tabular}{l}
F.Perp \\
(kN)
\end{tabular} & \begin{tabular}{l}
q.max \\
(kPa)
\end{tabular} \\
\hline LC. 1 - Summer & 1.29 & 0.33 & 3.21 & 7.08 & 100\% & 0.00 & 1,371.2 & 4,170.1 & 1,371.2 & 4,170.1 & 65.0 \\
\hline LC. 2 - Winter (Usual) & 1.02 & 0.65 & 2.89 & 7.08 & 100\% & 0.00 & 1,645.0 & 3,935.1 & 1,645.0 & 3,935.1 & 74.4 \\
\hline LC. 3 - IDF & 1.76 & 0.10 & 3.44 & 7.08 & 100\% & 0.00 & 793.7 & 3,299.3 & 793.7 & 3,299.3 & 43.8 \\
\hline LC. 4 - Winter (Unusual) & 0.95 & 0.73 & 2.80 & 7.08 & 100\% & 0.00 & 1,756.4 & 3,935.1 & 1,756.4 & 3,935.1 & 77.9 \\
\hline LC. 5 - EQ & 0.85 & 0.80 & 2.74 & 7.08 & 100\% & 0.00 & 1,916.3 & 3,836.8 & 1,916.3 & 3,836.8 & 78.6 \\
\hline LC. 6 - Post - EQ & 1.29 & 0.33 & 3.21 & 7.08 & 100\% & 0.00 & 1,371.2 & 4,170.1 & 1,371.2 & 4,170.1 & 65.0 \\
\hline
\end{tabular}

\section*{Location of Resultant}


LC 1


LC 2

\section*{DESIGN CALCULATIONS}


\section*{DESIGN CALCULATIONS COVER SHEET}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ G R O U P } & \multicolumn{4}{l|}{} \\
\hline Project No. : & \(17-3212-001\) & Project Name : & \multicolumn{1}{l|}{ Howson Dam (South Structure) } \\
\hline File No. : & & Discipline : & \multicolumn{2}{l|}{ Structural Engineering } & \\
\hline Calculation Title : & Pier Stability A nalysis - Bridge deck to be removed & Date : & Feb. 23, 2018 \\
\hline Calculation No. : & CIV-004 & Prepared by : & HS & Date : & April 20, 2018 \\
\hline No. of Sheets : & & Checked by : & YF & Date : & \\
\hline Supersedes Calc. No. : & & Approved by : & & \\
\hline
\end{tabular}
Calculation Description :
The dam has been reviewed against LRIA technical bulletins

\section*{Related Design Concept :}
Stability analysis for the structures is carried out using the "Gravity Method".
Six loading cases are utilized in the analyses based on the LRIA Technical Bulletin "Structural Design and Factors of Safety (August 2011).

\section*{Reference Codes and Standards :}
1.Design of Small Dams, Third Edition, U.S. Government Printing Office, Washington, D.C. 1987.
2. Structural Design and Factors of Safety - Technical Bulletin Ontario Ministry of Natural Resources (August 2011)
ENGINEER'S SEAL
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline & & & & & & \\
\hline Rev. \# & Rev. Description & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Notes and Figures} \\
\hline \multicolumn{4}{|l|}{Properties of Materials} \\
\hline \multicolumn{4}{|l|}{\(\square\)} \\
\hline \multirow[t]{2}{*}{\(\gamma_{\mathrm{w}=}=9.81 \frac{\mathrm{kN}}{\mathrm{m}^{3}}\)} & Water density & (silt \(=7.7 \cdot \frac{\mathrm{kN}}{\mathrm{m}^{3}}\) & Silt density \\
\hline & \multirow[t]{2}{*}{Concrete density adjusted due to combination of
the pier and abutment sections.} & \$silit: \(=20 \cdot\) dees & Angle of intemal fricioion for silt at rest condi \\
\hline roonc: \(=23.5 \cdot \frac{\mathrm{kN}}{\mathrm{m}^{3}}\) & & -10 \(=77 . \mathrm{kN}\) & \\
\hline \multirow[t]{2}{*}{\(\phi_{\text {cff }:}=23 \cdot \mathrm{deg}\)} & \multirow[t]{2}{*}{Fricion angl of oncreteffoundation interace} & & Bactill densty \\
\hline & & ¢fitil \(=30\) dees & Angle of interal triction for badifill at rest onodition \\
\hline \multirow[t]{2}{*}{\(\underline{y}\)} & \multirow[t]{2}{*}{Conesion at conceteffoundation iterefae (generally set to o)} & Timber: \(=10 . \mathrm{kN}\) & \\
\hline & & & Timber density for stoplogs) \\
\hline ficf: \(=\frac{-c}{2}=0\) & Tensile strength at concrete/rock interface (generally set to 0 , or \(0.5 \times\) cohesion). This is a negative number. & YGaralar: \(=15 \frac{\mathrm{kN}}{\mathrm{m}^{3}}\) & Weight of granular material or rip rap on top of section \\
\hline
\end{tabular}

\section*{Water Levels}
\(\nabla\)

Usual Summer Operating Levels
\begin{tabular}{ll} 
WLUS.Sum \(:=310.9 \mathrm{~m}\) & Upstream water level (left side) \\
WLDS.Sum \(:=305.27 \mathrm{~m}\) & \\
Downstream water level (right side)
\end{tabular}

Usual Winter Operating Levels Used in LC 2
WLUS.Win := 309.26m
WLDS.Win := 305.27 m

\section*{Unusual Flood Discharge Levels}

Used in LC 3
WLUS.IDF: \(=311.9 \mathrm{~m}\)
WLDS.IDF: \(=310.3 \mathrm{~m}\)
-

\section*{Seismic Accelerations}
-
\(\lambda_{\text {Hor }}:=0.0834\)
\(\lambda \operatorname{Ver}:=\frac{2}{3} \cdot \lambda_{\mathrm{Hor}}=0.056\)
Vertical component of earthquake intensity. CDA recommends a factor between \(1 / 2\) and \(2 / 3\) of the horizontal acceleration (pg 15 of Seismic Hazard Considerations Technical Bulletin)

\section*{Structure Geometry}

Input

Note: Enter structure geometry as series of points on \(X-Y\) grid. Align structure so that up streamis on the left side. Structure outline is "closed" automatically (last point is assigned same values as first). Ensure that values of ELE.Base.L and ELE.Base.R are adjusted to correspond with the lowest upstream and downstream elevations.


Lhor \(:=\max (\mathrm{X})-\min (\mathrm{X})=7.95 \mathrm{~m}\)
Horizontal projection of base
Angle of inclination of base. Positive is counter clockwise from the horizontal in the downstream direction

Inclined length of concrete-foundation interface

Variables for Combines Structure Mode

Bpier: \(=\mathrm{B}=1.67 \mathrm{~m}\)
Lincl.pier: \(: \mathrm{L}_{\text {incl }}=7.95 \mathrm{~m}\)
\(\alpha_{\text {pier }}:=0\)
\(\Delta\) Input

1- Plot Functions


Computation of Area and Center of Gravity

\section*{Gate/Stoplog Geometry}
-
\(\mathrm{X}_{\text {log }}:=0 \cdot \mathrm{~m}\)


ELEgate.top \(:=310.28 \mathrm{~m}\)
Tribgate \(:=\frac{10 . \mathrm{ft}}{2}=1.52 \mathrm{~m}\)
Wigate \(:=0 \mathrm{~m}\)
Total width of gate/stoplogs (for calculating weight on slab/rollway)

\section*{Forces on Gates/Stoplogs Transferred into Piers}
\begin{tabular}{ll} 
GatesSum.Hyd \(:=1\) & If gates are present during summer operation (and earthquake), set \(=1\), otherwise set to 0 \\
GatesWin.Hyd \(:=1\) & If gates are present during winter operation, set \(=1\), otherwise set to 0 \\
GatesIDF.Hyd \(:=1\) & If gates are present during IDF, set \(=1\), otherwise set to 0
\end{tabular}

\section*{Weight of Gates/Stoplogs bearing on rollway/slab}
\begin{tabular}{ll} 
GatesSum.Weight \(:=0\) & If gates are present during summer operation (and earthquake), set \(=1\), otherwise set to 0 \\
GatesWin.Weight \(:=0\) & If gates are present during winter operation, set \(=1\), otherwise set to 0 \\
GatesIDF.Weight \(:=0\) & If gates are present during IDF, set \(=1\), otherwise set to 0
\end{tabular}.
-

\section*{Weight of Main Structure (D)}
-
\(\mathrm{B}_{\text {ave }}:=\frac{2.03+0.93}{2} \cdot \mathrm{~m}=1.48 \mathrm{~m}\)
Vol_conc \(:=\) Area \(\cdot \mathrm{B}_{\mathrm{ave}}=66.7 \cdot \mathrm{~m}^{3}\)
\(\mathrm{W}_{\text {conc }}:=\) Vol_conc \(\cdot \gamma_{\text {conc }}=1568 \cdot \mathrm{kN}\)
MA \(:=\mathrm{L}_{\mathrm{hor}}-\mathrm{Xg}=3.975 \mathrm{~m}\)
\(\mathrm{M}_{\text {conc }}:=\mathrm{W}_{\text {conc }} \cdot \mathrm{MA}=6231.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)

Average width of the structure for calculating the pier weight

Volume of concrete per unit width of structure

Dead load of concrete in structure

Moment arm is the horizontal distance from right side of base to C.G
Moment from structure self weight
\[
\begin{aligned}
& \gamma_{\text {conc }}=23.5 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{3}} \\
& \text { Area }=45.1 \mathrm{~m}^{2} \\
& \mathrm{~B}=1.7 \mathrm{~m} \\
& \mathrm{~L}_{\text {hor }}=7.95 \mathrm{~m} \\
& \mathrm{Xg}=3.975 \mathrm{~m} \\
& \mathrm{Yg}=308.105 \mathrm{~m}
\end{aligned}
\]

\section*{Weight of Stoplogs (D) - NOT APPLICABLE}

10

\section*{Weight of Slab (D)}
\(\nabla\)
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{Wi}_{\text {slab }}:=0.001 \cdot \mathrm{~m}\) & \multirow[t]{2}{*}{Slab width} & \\
\hline & & \(\gamma_{\text {conc }}=23.5 . \underline{\mathrm{kN}}\) \\
\hline \(\mathrm{L}_{\text {slab }}:=0.001 \cdot \mathrm{~m}\) & Total length of slab & \(\gamma_{\text {conc }}=23.5 \cdot \overline{\mathrm{~m}^{3}}\) \\
\hline \(\mathrm{S}_{\text {thk }}:=0.001 \mathrm{~m}\) & Equivalent slab thickness & \[
\mathrm{B}=1.67 \mathrm{~m}
\] \\
\hline & & Lhor \(=7.95 \mathrm{~m}\) \\
\hline \(\mathrm{Wi}_{\text {Gir }}:=0 \cdot \mathrm{~m}\) & Girder width & \\
\hline LGir \(:=0 \cdot \mathrm{~m}\) & Total length of girder & \\
\hline Gir \(\mathrm{thk}:=\frac{1+0.4}{2} \cdot \mathrm{~m}=0.7 \mathrm{~m}\) & Equivalent girder thickness (conservative assumption) & \\
\hline \[
\mathrm{Gir}_{\mathrm{No}}:=4
\] & Number of girders in each span & \\
\hline
\end{tabular}
ELE \(_{\text {slab }}:=312.48 \cdot \mathrm{~m}-\frac{\left[\mathrm{L}_{\text {slab }} \cdot \mathrm{Wi}_{\text {slab }} \cdot \mathrm{S}_{\text {thk }} \cdot \frac{\mathrm{S}_{\text {thk }}}{2}+\mathrm{Gir}_{\mathrm{No}} \cdot \mathrm{L}_{\mathrm{Gir}} \cdot \mathrm{Wi}_{\text {Gir }} \cdot \operatorname{Gir}_{\text {thk }} \cdot\left(\frac{\text { Gir }_{\text {thk }}}{2}+\mathrm{S}_{\text {thk }}\right)\right]}{\mathrm{L}_{\text {slab }} \cdot \mathrm{Wi}_{\text {slab }} \cdot \mathrm{S}_{\text {thk }}+\mathrm{Gir}_{\mathrm{No}} \cdot \mathrm{L}_{\mathrm{Gir}} \cdot \mathrm{Wi}_{\mathrm{Gir}} \cdot \mathrm{Gir}_{\text {thk }}}=312.48 \mathrm{~m}\)
\(\mathrm{X}_{\text {slab }}:=\frac{\mathrm{L}_{\text {slab }}}{2}=0 \mathrm{~m}\)
\(\mathrm{Wi}_{\text {opening }}:=0 \mathrm{~m}\)
Lopening := 8.23 m
\(\mathrm{X}_{\text {opening }}:=2.12 \mathrm{~m}\)
Horizontal distance from left side ( \(x=0\) ) to centre of slab

Width of stoplog
opening
Length of stoplog opening

Horizontal distance from left side \((x=0)\) to centre of slab
\(\mathrm{W}_{\text {slab1 }}:=\gamma_{\text {conc }} \cdot\left(\mathrm{L}_{\text {slab }} \cdot \mathrm{Wi}_{\text {slab }} \cdot \mathrm{S}_{\text {thk }}+\mathrm{Gir}_{\mathrm{No}} \cdot \mathrm{L}_{\text {Gir }} \cdot \mathrm{Wi}_{\text {Gir }} \cdot\right.\) Gir \(\left._{\text {thk }}\right)=0 \cdot \mathrm{kN} \quad\) Dead load from slab (not considering opening)
\(\mathrm{MA}_{\text {slab1 }}:=\mathrm{L}_{\text {hor }}-\mathrm{X}_{\text {slab }}=7.950 \mathrm{~m} \quad\) Moment arm measured as horizontal distance from centre of slab to right side of base
\(\mathrm{W}_{\text {opening }}:=\gamma_{\text {conc }} \cdot \mathrm{L}_{\text {opening }} \cdot \mathrm{Wi}_{\text {opening }} \cdot \mathrm{S}_{\text {thk }}=0 \quad\) Weight to be removed from slab due to opening
\(\mathrm{MA}_{\text {opening }}:=\mathrm{L}_{\text {hor }}-\mathrm{X}_{\text {Opening }}=5.830 \mathrm{~m} \quad\) Moment arm measured as horizontal distance from centre of opening to right side of
\(\mathrm{W}_{\text {slab }}:=\mathrm{W}_{\text {slab } 1}-\mathrm{W}_{\text {opening }}=0 \mathrm{kN}\)
Net dead load from slab

DESIGN CALCULATIONS

\section*{Weight of Tower(D) - NOT APPLICABLE}

四

\section*{Weight of Riprap / Granular Material on Top of Section - NOT APPLICALBE}

Input coordinates
1-Calculations

Results

\section*{Upstream Hydrostatic Force (H)}

Figures
Calculations

Note: If inclined face is present, it is assumed to be linear from heel to water level.

Case 1: Summer Operating Level
\(\underset{M}{\mathrm{H}}:=\| \begin{array}{ll}0 \text { if WLUS.Sum } \leq \text { ELEBase } . L & =5.630 \\ \text { WLUS.Sum }- \text { ELEBase. } \mathrm{L} \text { otherwise }\end{array}\)
Height of water in front of section

PUS.Sum : \(=\mathrm{H} \cdot \gamma_{W}=55.2 \mathrm{kPa}\)


Height of water above top of section
\(L_{\text {below }}:=\frac{\mathrm{H}-\mathrm{H}_{\text {above }}}{\cos \left(\omega_{\mathrm{US}}\right)}=5.630 \mathrm{~m}\)
Inclined length of face under water
\(\mathrm{F} 1:=\frac{\left(\mathrm{H}-\mathrm{H}_{\text {above }}\right) \cdot \gamma_{\mathrm{w}} \cdot \mathrm{L}_{\text {below }}}{2} \cdot \mathrm{~B}=260.4 \mathrm{kN} \quad\) Force due to triangular portion of pressure diagram
Horizontal component of F1
\(\mathrm{F} 1_{\text {Ver }}:=\mathrm{F} 1 \cdot \sin \left(\omega_{\mathrm{US}}\right)=0 \mathrm{kN} \quad\) Vertical component of F1
\(\operatorname{ELEF}:=\) ELEBase. \(\mathrm{L}+\left(\frac{\mathrm{L}_{\text {below }}}{3}\right) \cdot \cos \left(\omega_{\mathrm{US}}\right)=307.147 \mathrm{~m} \quad\) Elevation of F1
MAF1.Hor := ELEF1 - ELEBase. \(\mathrm{R}=1.877 \mathrm{~m} \quad\) Moment arm of horizontal component of F1
MAF1.Ver \(:=L_{\text {hor }}-(\) ELEF1 - ELEBase.L \() \tan \left(\omega_{\text {US }}\right)=7.950 \mathrm{~m}\)
\(\mathrm{F} 2:=\mathrm{H}_{\text {above }} \cdot \gamma_{\mathrm{w}} \cdot \mathrm{L}_{\text {below }} \cdot \mathrm{B}=0.0 \mathrm{kN}\)
Moment arm of vertical component of F1

F 2 Hor \(:=\mathrm{F} 2 \cdot \cos (\omega \mathrm{US})=0 \mathrm{kN}\)
F2 Ver \(:=\mathrm{F} 2 \cdot \sin \left(\omega_{\mathrm{US}}\right)=0 \mathrm{kN}\)
ELEF2 \(:=\) ELEBase. \(L+\left(\frac{L_{\text {below }}}{2}\right) \cdot \cos \left(\omega_{\mathrm{US}}\right)=308.085 \mathrm{~m}\)
\begin{tabular}{l} 
WLUS.Sum \(=310.900 \mathrm{~m}\) \\
ELETop \(^{2}=310.940 \mathrm{~m}\) \\
ELE Base \(. L=305.270 \mathrm{~m}\) \\
ELE Base \(. R=305.270 \mathrm{~m}\) \\
\(\omega_{\text {US }}=0.0\) \\
Lhor \(_{\text {ho }}=7.95 \mathrm{~m}\) \\
\(B=1.67 \mathrm{~m}\) \\
\hline
\end{tabular}
```

MAF2.Hor := ELEF2 - ELEBase. R $=2.815 \mathrm{~m}$
MAF2.Ver $:=$ Lhor $-\left(\right.$ ELEF2 $^{2}-$ ELEBase.L $) \tan \left(\omega_{\mathrm{US}}\right)=7.950 \mathrm{~m}$
FUS.Sum.Hor : $={ }^{\mathrm{F}} 1_{\text {Hor }}+\mathrm{F} 2$ Hor $=260.4 \mathrm{kN}$
FUS.Sum.Ver : $=\mathrm{F} 1$ Ver + F2 Ver $=0 \mathrm{kN}$
MUS.Sum.Hor $:={ }^{\text {F1 Hor }} \cdot$ MAF1.Hor + F2 Hor \cdot MAF2.Hor $=488.7 \mathrm{kN} \cdot \mathrm{m}$
MUS.Sum.Ver $:=$ F1 Ver \cdot MAF1.Ver + F2Ver \cdot MAF2.Ver $=0 \mathrm{kN} \cdot \mathrm{m}$

```

\section*{Case 2: Winter Operating Level}
\(\mathrm{H}:=\| \begin{aligned} & 0 \text { if WLUS.Win } \leq \text { ELEBase.L } \quad=3.990 \\ & \text { WLUS.Win }- \text { ELEBase.L }^{2} \text { otherwise }\end{aligned}\)

PUS.Win : \(=\mathrm{H} \cdot \gamma_{\mathrm{W}}=39.1 \mathrm{kPa}\)

Hahoxe: \(=\left\lvert\, \begin{array}{ll}0 \text { if WLUS.Win } \leq \text { ELETop } & =0.000 \\ \text { WLUS.Win - ELETop otherwise }\end{array}\right.\)
Lbeldw: \(=\frac{\mathrm{H}-\mathrm{H}_{\text {above }}}{\cos \left(\omega_{\mathrm{US}}\right)}=3.990 \mathrm{~m}\)
\(\mathrm{F} 1:=\frac{\left(\mathrm{H}-\mathrm{H}_{\text {above }}\right) \cdot \gamma_{\mathrm{w}} \cdot \mathrm{L}_{\text {below }}}{2} \cdot \mathrm{~B}=130.8 \mathrm{kN}\)
\(\mathrm{F}_{\mathrm{M}}^{\mathrm{H}} \mathrm{Hgh}:=\mathrm{F} 1 \cdot \cos (\omega \mathrm{US})=130.8 \mathrm{kN}\)
F1ADER: \(=\mathrm{F} 1 \cdot \sin (\omega \mathrm{US})=0 \mathrm{kN}\)
ELEE1 \(:=\) ELEBase \(\cdot L^{\text {W. }}\left(\frac{L_{\text {below }}}{3}\right) \cdot \cos (\omega \mathrm{US})=306.600 \mathrm{~m}\)
MAF \({ }^{\text {Hor }}:=\) ELEF1 - ELEBase \(. R=1.330 \mathrm{~m}\)
MAFhVer: \(=\) Lhor \(-\left(E L E F 1-E_{\text {BLE }}\right.\) Base.L \() \tan \left(\omega_{U S}\right)=7.950 \mathrm{~m}\)
\(\underset{\sim}{\mathrm{F}} 2 \mathrm{~A}_{\mathrm{A}}:=\mathrm{H}_{\text {above }} \cdot \gamma_{\mathrm{w}} \cdot\) L \(_{\text {below }} \cdot \mathrm{B}=0.0 \mathrm{kN}\)
\({ }_{\text {FAN }} 2\) Hort \(:=\mathrm{F} 2 \cdot \cos \left(\omega_{\mathrm{US}}\right)=0 \mathrm{kN}\)
F2AVER: \(=\mathrm{F} 2 \cdot \sin \left(\omega_{\mathrm{US}}\right)=0 \mathrm{kN}\)
\(\mathrm{ELEF2}_{\mathrm{M}}=\) ELEBase \(. L+\left(\frac{\mathrm{L}_{\text {below }}}{2}\right) \cdot \cos \left(\omega_{\mathrm{US}}\right)=307.265 \mathrm{~m}\)
MAF22H0r: = ELEF2 - ELEBase.R \(=1.995 \mathrm{~m}\)

FUS.Win.Hor : \(=\) F1 \({ }^{\text {Hor }}+\) F2 Hor \(=130.8 \mathrm{kN}\)
FUS.Win.Ver: \(=\) F1 Ver + F2 Ver \(=0 \mathrm{kN}\)
MUS.Win.Hor \(:=\) F1 Hor \(\cdot\) MAF1.Hor + F2 Hor \(\cdot\) MAF2.Hor \(=174 \mathrm{kN} \cdot \mathrm{m}\)
MUS.Win.Ver:= F1 Ver \(\cdot\) MAF1.Ver + F2Ver \(\cdot\) MAF2.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)

\section*{Case 3: IDF Level}

H: \| \(\begin{array}{lll}0 & \text { if WLUS.IDF } \leq \text { ELEBase.L } & =6.630 \\ \text { WLUS.IDF }- \text { ELEBase.L otherwise }\end{array}\)
PUS.IDF: \(=\mathrm{H} \cdot \gamma_{W}=65 \mathrm{kPa}\)
\[
\text { Haboxe: }=\left\lvert\, \begin{array}{ll}
0 \text { if WLUS.IDF } \leq \text { ELETop } & =0.960 \\
\text { WLUS.IDF - ELETop otherwise } &
\end{array}\right.
\]

Lbeldaki \(=\frac{\mathrm{H}-\mathrm{H}_{\text {above }}}{\cos \left(\omega_{\mathrm{US}}\right)}=5.670 \mathrm{~m}\)
\(\mathrm{F} 1:=\frac{\left(\mathrm{H}-\mathrm{H}_{\text {above }}\right) \cdot \gamma_{\mathrm{w}} \cdot \text { L }_{\text {below }}}{2} \cdot \mathrm{~B}=264.1 \mathrm{kN}\)
F1 \({ }^{\text {F }} \mathrm{h}:=\mathrm{F} 1 \cdot \cos \left(\omega_{\mathrm{US}}\right)=264.1 \mathrm{kN}\)

Horizontal hydrostatic force
Vertical hydrostatic force
Moment due to horizontal component of hydrostatic force
Moment due to vertical component of hydrostatic force
\begin{tabular}{l} 
WLUS.Win \(=309.260 \mathrm{~m}\) \\
ELETop \(=310.940 \mathrm{~m}\) \\
ELEBase. \(\mathrm{L}=305.270 \mathrm{~m}\) \\
ELEBase \(. \mathrm{R}=305.270 \mathrm{~m}\) \\
\(\omega_{\mathrm{US}}=0.0\) \\
Lhor \(_{\text {hor }}=7.95 \mathrm{~m}\) \\
\(B=1.67 \mathrm{~m}\) \\
\hline
\end{tabular}
\(B=1.67 \mathrm{~m}\)
WLUS.IDF \(=311.900 \mathrm{~m}\)
ELETop \(=310.940 \mathrm{~m}\)
ELEBase \(. L=305.270 \mathrm{~m}\)
ELEBase. \(R=305.270 \mathrm{~m}\)
\(\omega_{U S}=0.0\)
\(L_{\text {hor }}=7.95 \mathrm{~m}\)
\(B=1.67 \mathrm{~m}\)
```

F1 $\mathrm{Ver}_{\mathrm{A}}:=\mathrm{F} 1 \cdot \sin (\omega \mathrm{US})=0 \mathrm{kN}$
$\mathrm{ELE}_{\mathrm{M} 1}:=$ ELE Base.L $^{\mathrm{M}}+\left(\frac{\mathrm{L}_{\text {below }}}{3}\right) \cdot \cos \left(\omega_{\mathrm{US}}\right)=307.160 \mathrm{~m}$
MAEAH0r: $=$ ELEF1 - ELEBase. $\mathrm{R}=1.890 \mathrm{~m}$
MAFhVer: $=$ Lhor $-\left(E L E F 1-E_{\text {LEBASe.L }}\right) \tan \left(\omega_{U S}\right)=7.950 \mathrm{~m}$
F2 $:=H_{\text {above }} \cdot \gamma_{w} \cdot L_{\text {below }} \cdot B=89.4 \mathrm{kN}$

```

```

$\mathrm{F}_{4} \mathrm{Nerer}_{\mathrm{i}}:=\mathrm{F} 2 \cdot \sin \left(\omega_{\mathrm{US}}\right)=0 \mathrm{kN}$
$\mathrm{ELEFR}_{\mathrm{M}}=$ ELEBase $. L+\left(\frac{\mathrm{L}_{\text {below }}}{2}\right) \cdot \cos (\omega \mathrm{US})=308.105 \mathrm{~m}$
MAF2uHan: $=$ ELE $_{F 2}-$ ELE Base. $^{\text {R }}=2.835 \mathrm{~m}$

```

```

FUS.IDF.Hor : $=$ F1 ${ }^{\text {Hor }}+$ F2 $\mathrm{Hor}=353.6 \mathrm{kN}$
FUS.IDF.Ver : $=\mathrm{F} 1_{\mathrm{Ver}}+\mathrm{F} 2 \mathrm{Ver}=0 \mathrm{kN}$
MUS.IDF.Hor $:=$ F1 Hor \cdot MAF1.Hor + F2 Hor \cdot MAF2.Hor $=752.8 \mathrm{kN} \cdot \mathrm{m}$
MUS.IDF.Ver $:=\mathrm{F}^{\mathrm{VVer}} \cdot \mathrm{MA}_{\mathrm{F} 1 . \mathrm{Ver}}+\mathrm{F} 2 \mathrm{Ver} \cdot \mathrm{MA}_{\mathrm{F} 2 . \mathrm{Ver}}=0 \mathrm{kN} \cdot \mathrm{m}$

- Calculations

```

\section*{Downstream Hydrostatic Force (H)}

\footnotetext{
回-
}

\section*{Hydrostatic Force on Gates (H)}

Calculations

Note: Pressure from tailwater not considered. Calculations assume a flat vertical face

\section*{Case 1: Summer operating level}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Case 1: Summer operating level} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{Height of water in front of gate/stoplogs}} & GatesSum.Hyd = 1 \\
\hline & & & GatesWin.Hyd \(=1\) \\
\hline  & & & \[
\begin{aligned}
& \text { GatesIDF.Hyd = } 1 \\
& \text { WLUS.Sum }=310.900 \mathrm{~m} \\
& \text { WLUS. Win }=309.260 \mathrm{~m}
\end{aligned}
\] \\
\hline & & & \[
\text { WLUS.IDF }=311.900 \mathrm{~m}
\] \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Haboxe: }: \left\lvert\, \begin{array}{l}
0 \text { if WLUS.Sum } \leq \text { ELEgate.top } \\
\text { WLUS.Sum }- \text { ELE gate.top otherwise }
\end{array}\right. \\
& \text { F1 }:=\frac{\left(\mathrm{H}-\mathrm{H}_{\mathrm{above}}\right)^{2} \cdot \gamma_{\mathrm{w}}}{2} \cdot \text { Tribgate }=74.2 \mathrm{kN}
\end{aligned}
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Height of water above top of gate/stoplogs}} & \[
\begin{aligned}
& \text { ELE }_{\text {sill }}=307.130 \mathrm{~m} \\
& \text { ELE }_{\text {gate.top }}=310.280 \mathrm{~m}
\end{aligned}
\] \\
\hline & & & ELEBase.R \(=305.270 \mathrm{~m}\) \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Force due to triangular portion of pressure diagram}} & Tribgate \(=1.524 \mathrm{~m}\) \\
\hline  & & & Lhor \(=7.95 \mathrm{~m}\) \\
\hline  & \multicolumn{3}{|l|}{Moment arm} \\
\hline \[
\mathrm{F} 2:=\mathrm{H}_{\mathrm{above}} \cdot\left(\mathrm{H}-\mathrm{H}_{\text {above }}\right) \cdot \gamma_{\mathrm{w}} \cdot \text { Trib }_{\text {gate }}=29.2 \mathrm{kN}
\] & \multicolumn{3}{|l|}{Force due to rectangular portion of pressure diagram} \\
\hline MA2 \(:=\left(\right.\) ELE \(_{\text {sill }}+\frac{\mathrm{H}-\mathrm{H}_{\text {above }}}{2}-\) ELEBase.R \(\left.^{2}\right)=3.435 \mathrm{~m}\) & Moment arm & & \\
\hline \[
\mathrm{F}_{\text {gateH.Sum }}:=\left\lvert\, \begin{aligned}
& (\mathrm{F} 1+\mathrm{F} 2) \text { if GatesSum.Hyd }=1=103.4 \cdot \mathrm{kN} \\
& 0 \text { otherwise }
\end{aligned}\right.
\] & & Total hydrostatic force on gater & logs \\
\hline \[
\mathrm{M}_{\text {gateH.Sum }}:=\left\lvert\, \begin{aligned}
& (\mathrm{F} 1 \cdot \mathrm{MA} 1+\mathrm{F} 2 \cdot \mathrm{MA} 2) \text { if GatesSum.Hyd }=1 \\
& 0 \text { otherwise }
\end{aligned}\right.
\] & \(=316.1 \cdot \mathrm{kN} \cdot \mathrm{m}\) & Moment due to hydrostatic & gate/stoplogs \\
\hline
\end{tabular}

\section*{Case 2: Winter operating level}
\[
\begin{aligned}
& \mathrm{M}:=\| \begin{array}{l}
0 \text { if WLUS.Win } \leq \text { ELE }_{\text {sill }} \\
\text { WLUS.Win }- \text { ELE }_{\text {sill }} \text { otherwise }
\end{array} \\
& \text { Haboxe: }: \left\lvert\, \begin{array}{ll}
0 \text { if WLUS.Win } \leq \text { ELEgate.top } & =0.000 \\
\text { WLUS.Win - ELEgate.top otherwise }
\end{array}\right. \\
& \mathrm{F} 1:=\frac{\left(\mathrm{H}-\mathrm{H}_{\mathrm{above}}\right)^{2} \cdot \gamma_{\mathrm{w}}}{2} \cdot \text { Trib }_{\text {gate }}=33.9 \mathrm{kN} \\
& \text { MA1: }=\left(\text { ELE }_{\text {sill }}+\frac{\mathrm{H}-\mathrm{H}_{\text {above }}}{3}-\text { ELE Base } . R^{3}\right)=2.570 \mathrm{~m} \\
& \text { F2: }=H_{\text {above }} \cdot\left(H-H_{\text {above }}\right) \cdot \gamma_{w} \cdot \text { Trib }_{\text {gate }}=0.0 \mathrm{kN} \\
& \text { MA2 : }=\left(\text { ELE }_{\text {sill }}+\frac{\mathrm{H}-\mathrm{H}_{\text {above }}}{2}-\text { ELE Base } . R^{2}\right)=2.925 \mathrm{~m} \\
& \text { FgateH.Win }:=\left\lvert\, \begin{array}{l}
(\mathrm{F} 1+\mathrm{F} 2) \text { if GatesWin.Hyd }=1=33914.3 \\
0 \text { otherwise }
\end{array}\right. \\
& M_{\text {gateH.Win }}:=\left\lvert\, \begin{array}{l}
(\mathrm{F} 1 \cdot \mathrm{MA1}+\mathrm{F} 2 \cdot \mathrm{MA} 2) \text { if GatesWin.Hyd }=1=87159.8 \\
0 \quad \text { otherwise }
\end{array}\right.
\end{aligned}
\]

\section*{Case 3: IDF level}
\[
\begin{aligned}
& \mathrm{H}:=\left\lvert\, \begin{array}{l}
0 \text { if WLUS.IDF } \leq \operatorname{ELE}_{\text {Sill }} \\
\text { WLUS.IDF }- \text { ELE }_{\text {Sill }} \text { otherwise }
\end{array} \quad=4.770\right. \\
& \text { Haboxe: }=\left\lvert\, \begin{array}{ll}
0 \text { if WLUS.IDF } \leq \text { ELEgate.top } & =1.620 \\
\text { WLUS.IDF - ELEgate.top otherwise }
\end{array}\right. \\
& \underset{\mathrm{KM}}{\mathrm{~F}}:=\frac{\left(\mathrm{H}-\mathrm{H}_{\mathrm{above}}\right)^{2} \cdot \gamma_{\mathrm{w}}}{2} \cdot \text { Tribgate }=74.2 \mathrm{kN} \\
& \text { MA1: }=\left(\text { ELE }_{\text {sill }}+\frac{\mathrm{H}-\mathrm{H}_{\text {above }}}{3}-\text { ELE Base } . R^{3}\right)=2.910 \mathrm{~m} \\
& \mathrm{~F} 2:=\mathrm{H}_{\text {above }} \cdot\left(\mathrm{H}-\mathrm{H}_{\text {above }}\right) \cdot \gamma_{\mathrm{w}} \cdot \text { Trib }_{\text {gate }}=76.3 \mathrm{kN} \\
& \text { MA2 }:=\left(\text { ELE }_{\text {sill }}+\frac{\mathrm{H}-\mathrm{H}_{\text {above }}}{2}-\text { ELE Base } . R^{2}\right)=3.435 \mathrm{~m} \\
& \mathrm{~F}_{\text {gateH.IDF }}:=\| \begin{array}{l}
(\mathrm{F} 1+\mathrm{F} 2) \text { if Gates }{ }^{\text {IDF.Hyd }}=1=150.5 \cdot \mathrm{kN} \\
0 \text { otherwise }
\end{array} \\
& \mathrm{M}_{\text {gateH.IDF }}:=\left\{\begin{array}{l}
(\mathrm{F} 1 \cdot \mathrm{MA1}+\mathrm{F} 2 \cdot \mathrm{MA} 2) \text { if GatesIDF.Hyd }=1=477.9 \cdot \mathrm{kN} \cdot \mathrm{~m} \\
0 \text { otherwise }
\end{array}\right.
\end{aligned}
\]

\section*{Hydraulic Drag Force (H)}

風
Weight of Water Above Section (H) - NOT APPLICABLE

Input coordinates

1- Calculations

\section*{1-Results}

\section*{Initial Uplift Forces (U)}

\section*{Figures}

Uplift Function Definition

\section*{Input and Calculation}

Note: Analysis assumes uplift pressure acts perpendicular to the concrete-foundation interface. Uplift pressure is considered positive, but the actual forces are negative when vertically upwards and positive in downstream (right) direction. Crack length is initially set to 0 but may change in subsequent cracked base analysis. Uplift is calculated again in the cracked section analysis and in the post-earthquake load combination.

Factor UL : \(=1.00\)
\(\mathrm{L}_{\text {crack } 0}:=0 \cdot \mathrm{~m}\)
Factor to reduce uplift pressure if required. Set to 1.00 for \(100 \%\).
Set initial crack length. Measured from left side, parallel to base

PUSUL.Sum \(:=\) Factor UL \(\cdot\) PUS.Sum \(=55.2 \cdot \mathrm{kPa}\)
Uplift pressure at upstream (left) side
PDSUL.Sum \(:=\) FactorUL \(\cdot\) PDS.Sum \(=0 \cdot \mathrm{kPa}\)
Uplift pressure at downstream (right) side
PUSUL.Win \(:=\) FactorUL \(\cdot\) PUS.Win \(=39.1 \cdot \mathrm{kPa}\)

PDSUL.Win \(:=\) FactorUL \(\cdot\) PDS.Win \(=0 \cdot \mathrm{kPa}\)
PUSUL.IDF \(:=\) FactorUL \(\cdot\) PUS.IDF \(=65 \cdot \mathrm{kPa}\)

PDSUL.IDF \(:=\) FactorUL \(\cdot\) PDS.IDF \(=49.3 \cdot \mathrm{kPa}\)

> \begin{tabular}{l}  Lincl \(=7.95 \mathrm{~m}\) \\ ELEBase. \(\mathrm{L}=305.270 \mathrm{~m}\) \\ ELE Base. \(^{\mathrm{R}}=305.270 \mathrm{~m}\) \\ WLUS.Sum \(=310.900 \mathrm{~m}\) \\ WLUS.Win \(=309.260 \mathrm{~m}\) \\ WLUS.IDF \(=311.900 \mathrm{~m}\) \\ WLDS.Sum \(=305.270 \mathrm{~m}\) \\ WLDS.Win \(=305.270 \mathrm{~m}\) \\ WLDS.IDF \(=310.300 \mathrm{~m}\) \\ PUS.Sum \(=55.2 \cdot \mathrm{kPa}\) \\ PLS.Sum \(^{2}=0.0 \cdot \mathrm{kPa}\) \\ \hline \end{tabular}

\section*{Case 1: Water at summer operating levels}
\(P_{\mathrm{U} . \operatorname{Sum}}(\mathrm{x}):=\mathrm{P}_{\mathrm{UL}}\left(\mathrm{x}, \mathrm{L}_{\text {crack } 0}, \mathrm{P}_{\mathrm{USUL}} . S u m, \mathrm{P}_{\mathrm{DSUL}} . \operatorname{Sum}\right) \quad\) Creates the pressure function

Total uplift force. Calculated as the area under the uplift pressure diagram.
\(M A:=L_{\text {incl }}-\frac{1}{\text { FU0.Sum }^{M}}\left(\int_{0}^{L_{\text {incl }}} \operatorname{PU.Sum}(x) \cdot x \cdot B d x\right)=5.3 m\)
MU0.Sum := FU0.Sum \(\cdot \mathrm{MA}=1949 \cdot \mathrm{kN} \cdot \mathrm{m}\)
Moment arm of uplift force about the right side of base. Measured parallel to base.

Moment from uplift on uncracked section
FU0.Sum.Hor := FU0.Sum \(\cdot \sin (\alpha)=0 \cdot \mathrm{kN}\)
Uplift resolved into horizontal and vertical forces for subsequent calculations
FU0.Sum.Ver := FU0.Sum \(\cdot \cos (\alpha)=-367.7 \cdot \mathrm{kN}\)

\section*{Case 2: Water at winter operating levels}
\[
\begin{aligned}
& \text { PU.Win }(\mathrm{x}):=\text { PUL }\left(\mathrm{x}, \mathrm{~L}_{\text {crack } 0}, \mathrm{P}_{\text {USUL.Win }}, \mathrm{P}_{\text {DSUL.Win }}\right) \\
& \text { FU0.Win : }=\int_{0}^{\mathrm{L}_{\mathrm{incl}}} \operatorname{P}_{\mathrm{U} . \operatorname{Win}(\mathrm{x})} \cdot \mathrm{B} \mathrm{dx}=260.6 \cdot \mathrm{kN} \\
& \text { MA: }=L_{\text {incl }}-\frac{1}{\text { FU0.Win }^{M}}\left(\int_{0}^{L_{\text {incl }}} \operatorname{PU.Win}(x) \cdot x \cdot B d x\right)=5.3 m
\end{aligned}
\]
```

MU0.Win := FU0.Win \cdot MA $=1381.2 \cdot \mathrm{kN} \cdot \mathrm{m}$
FU0.Win.Hor: $=-\mathrm{F}_{\mathrm{W}} 0$.Win $\cdot \sin (\alpha)=0 \cdot \mathrm{kN}$
$\mathrm{F}_{\mathrm{U} 0}$.Win.Ver $:=-\mathrm{F}_{\mathrm{U}}$ 0.Win $\cdot \cos (\alpha)=-260.6 \cdot \mathrm{kN}$

```

\section*{Case 3: Water at IDF Ievels}
\[
\begin{aligned}
& \mathrm{P}_{\mathrm{U} . \operatorname{IDF}(\mathrm{x})}:=\mathrm{P}_{\mathrm{UL}}\left(\mathrm{x}, \mathrm{~L}_{\mathrm{crack} 0}, \mathrm{P}_{\mathrm{USUL.IDF}}, \mathrm{P}_{\mathrm{DSUL}} \mathrm{IDF}\right) \\
& \mathrm{F}_{\mathrm{U} 0 . \mathrm{IDF}}:=\int_{0}^{\mathrm{L}_{\mathrm{incl}}} \mathrm{P}_{\mathrm{U} . \operatorname{IDF}}(\mathrm{x}) \cdot \mathrm{B} \mathrm{dx}=761.6 \cdot \mathrm{kN} \\
& \mathrm{MA}_{\mathrm{M}}:=\mathrm{L}_{\mathrm{incl}}-\frac{1}{\mathrm{~F}_{\mathrm{U} 0 . \mathrm{IDF}}}\left(\int_{0}^{\mathrm{L}_{\mathrm{incl}}} \mathrm{P}_{\mathrm{U} . \mathrm{IDF}}(\mathrm{x}) \cdot \mathrm{x} \cdot \mathrm{~B} \mathrm{dx}\right)=4.16 \mathrm{~m} \\
& \mathrm{M}_{\mathrm{U} 0 . \mathrm{IDF}}:=\mathrm{F}_{\mathrm{U} 0 . \mathrm{IDF}} \cdot \mathrm{MA}=3165.8 \cdot \mathrm{kN} \cdot \mathrm{~m} \\
& \mathrm{~F}_{\mathrm{U} 0 . \mathrm{IDF} . \mathrm{Hor}}:=-\mathrm{F}_{\mathrm{U} 0 . \mathrm{IDF}} \cdot \sin (\alpha)=0 \cdot \mathrm{kN} \\
& \mathrm{~F}_{\mathrm{U} 0 . \mathrm{IDF} . \mathrm{Ver}}:=-\mathrm{F}_{\mathrm{U} 0 . \mathrm{IDF}} \cdot \cos (\alpha)=-761.6 \cdot \mathrm{kN} \\
& \text { Input and Calculation } \\
& \text { In } \\
& \text { Plot of Results }
\end{aligned}
\]

\section*{Upstream Silt Buildup (S)}

1-

\section*{Downstream Backfill (S)}

風
Ice Loading (I)

\section*{USUAL LOAD CASE}

\section*{Direct ice load on structure}

IceLoad \(_{\text {usual }}:=75 \frac{\mathrm{kN}}{\mathrm{m}}\)
Fice.1.usual \(=\operatorname{IceLoad}_{\text {usual }} B=125.6 \cdot \mathrm{kN}\)
ELE \({ }_{\text {ice }}:=\) WLUS.Win \(-0.3 \mathrm{~m}=308.96 \mathrm{~m}\)
MA:= ELEice - ELEBase. R \(=3.7 \mathrm{~m}\)
\(\mathrm{M}_{\text {ice.1.usual }}:=\mathrm{F}_{\text {ice.1.usual }} \cdot \mathrm{MA}=463.6 \cdot \mathrm{kN} \cdot \mathrm{m}\)

\section*{Ice load on adjacent gates/stop logs}

Note: Ice load in this section acts on the tributary gate width to be transferred into gate slots
Fice.gate.usual \(:=\left\{\begin{array}{l}0 \text { if GatesWin.Hyd }=0 \\ \text { IceLoad }_{\text {usual }} \cdot \text { Trib }_{\text {gate }} \text { otherwise }\end{array}\right.\)
\(=114.3 \cdot \mathrm{kN}\)
Wigate \(=0.00\)
Tribgate \(=1.52 \mathrm{~m}\)
ELEBase \(. \mathrm{R}=305.270 \mathrm{~m}\)
WLUS.Win \(=309.260 \mathrm{~m}\)
\(\mathrm{~B}=1.67 \mathrm{~m}\)
GatesWin. Hyd \(=1\)

Force acting on the structure
Elevation of force (assumed to act at 0.3 m below water level)
Moment arm is vertical distance from force to right side of base
Moment about right side of base

GROUP
```

M
Fice.usual := Fice.1.usual + Fice.gate.usual }=239.9\textrm{kN
Mice.usual := M Mice.1.usual }+\mp@subsup{M}{\mathrm{ ice.gate.usual }}{}=885.3\textrm{kN}\cdot\textrm{m
UNUSUAL LOAD CASE
Direct ice load on structure
IceLoad := 83.5 \frac{\textrm{kN}}{\textrm{m}}
Ice loading on structure (enter as kN/m)
Fice.1 := IceLoad B = 139.9 年N
Force acting on the structure

```

```

Ice load on adjacent gates/stop logs
Note: Ice load in this section acts on the tributary gate width to be transferred into gate slots

```

```

Mice.gate := Fice.gate }\cdot\textrm{MA}=469.6\textrm{kN}\cdot\textrm{m
Fice := Fice.1 + Fice.gate = 267.1 kN
Mice := M Mice.1 }+\mp@subsup{M}{\mathrm{ ice.gate }}{}=985.7\textrm{kN}\cdot\textrm{m

```

\section*{Seismic Forces－Inertia of Structure Dead Load（Q）}

\section*{■}

\section*{Seismic Forces－Hydrodynamic Forces（Q）}

Figures
1－Calculations

\section*{Seismic Forces－Dynamic Soil Pressures（Q）}

四

\section*{Tensioned Anchors－NOT APPLICABLE}

回

\section*{Other Forces－NOT APPLICABLE}

10

\section*{Load Case 1. Usual Loading Summer Case ( \(D+H+S+U\) )}

\section*{LC. 1 - Summary of Forces}

\section*{Deadloads (D):}
\(\mathrm{W}_{\text {conc }}=1567.8 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {log. }}\).Sum \(=0\)
\(\mathrm{W}_{\text {slab }}=0 \mathrm{kN}\)
\(W_{\text {tower }}=0\)
\[
\begin{aligned}
& \mathrm{M}_{\mathrm{conc}}=6231.8 \cdot \mathrm{kN} \cdot \mathrm{~m} \\
& \mathrm{M}_{\mathrm{log} . \operatorname{Sum}}=0 \\
& \mathrm{M}_{\text {slab }}=0 \mathrm{kN} \cdot \mathrm{~m} \\
& \mathrm{M}_{\text {tower }}=0
\end{aligned}
\]

\section*{Hydraulic (H):}

FUS.Sum.Hor \(=260.4 \cdot \mathrm{kN}\)
FUS.Sum.Ver \(=0 \cdot \mathrm{kN}\)
FDS.Sum.Hor \(=0 \mathrm{kN}\)
FDS.Sum.Ver \(=0 \mathrm{kN}\)
FgateH.Sum \(=103.4 \mathrm{kN}\)
\(\mathrm{W}_{\text {Water.Above.Sum }}=0\)
MUS.Sum.Hor \(=488.7 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MUS.Sum.Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MDS.Sum.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.Sum.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {gateH }}\). Sum \(=316.1 \mathrm{kN} \cdot \mathrm{m}\)
MWater.Above.Sum \(=0\)

\section*{Soil (S):}

FUS.silt.Hor \(=0 \mathrm{kN}\)
WUS.silt \(=0 \mathrm{kN}\)
FDS.fill.Hor \(=0\)
\(\mathrm{W}_{\text {DS.fill }}=0\)
\(\mathrm{W}_{\text {Granular.Sum }}=0 \mathrm{kN}\)
MUS.silt.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MUS.silt.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(M_{\text {DS.fill.Hor }}=0\)
\(M_{\text {DS.fill.Ver }}=0\)
\(\mathrm{M}_{\mathrm{Granular}} \cdot \mathrm{Sum}=0 \mathrm{kN} \cdot \mathrm{m}\)
Uplift (U):
FU0.Sum.Hor \(=0 \cdot \mathrm{kN} \quad\) MU0.Sum \(=1949 \cdot \mathrm{kN} \cdot \mathrm{m}\)
FU0.Sum.Ver \(=-367.7 \cdot \mathrm{kN}\)

\section*{Other Forces:}

Fanchor. Hor \(=0\)
Manchor .Hor \(=0\)
Fanchor.Ver \(=0\)
Fother.Hor. \(1=0\)
\(\mathrm{M}_{\text {anchor }}\).Ver \(=0\)
\(\mathrm{M}_{\text {other.Hor. } 1}=0\)
Fother.Ver. \(1=0\)
\(\mathrm{M}_{\mathrm{other} . \text { Ver. } 1}=0\)

\section*{LC. 1 - Combine Forces and Moments}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
\text { Fhor0 }:= & \left(\text { FUS.Sum.Hor }-\mathrm{F}_{\text {DS.Sum.Hor }}+\mathrm{FgateH.Sum}\right)+\left(\mathrm{F}_{\text {US.silt.Hor }}-\mathrm{FDS}_{\mathrm{DS} . \text { fill.Hor }}\right) \ldots=363.8 \mathrm{kN} \\
& +\left(\mathrm{F}_{\mathrm{U}} 0 . \text { Sum.Hor }\right)+\left(\mathrm{F}_{\text {anchor.Hor }}+\mathrm{F}_{\text {other.Hor.1 }}\right)
\end{aligned}
\] & Sum of horizontal forces \\
\hline \[
\begin{aligned}
\mathrm{F}_{\text {ver0 } 0}:= & \left(\mathrm{W}_{\text {conc }}+\mathrm{W}_{\text {log.Sum }}+\mathrm{W}_{\text {slab }}+\mathrm{W}_{\text {tower }}\right)+\left(\mathrm{F}_{\text {US.Sum.Ver }}+\mathrm{F}_{\text {DS.Sum.Ver }}+\mathrm{W}_{\text {Water.Above.Sum }}\right) \ldots=1200 \mathrm{kN} \\
& +\left(\mathrm{W}_{\text {US.silt }}+\mathrm{W}_{\text {DS.fill }}+\mathrm{W}_{\text {Granular.Sum }}\right)+\left(\mathrm{F}_{\text {U0.Sum.Ver }}\right)+\left(\mathrm{F}_{\text {anchor.Ver }}+\mathrm{F}_{\text {other.Ver. } 1}\right)
\end{aligned}
\] & Sum of vertical forces \\
\hline \(\mathrm{F}_{\text {parallel0 }}:=\) Fhor0 \(\cdot \cos (\alpha)-\mathrm{F}_{\mathrm{ver} 0} \cdot \sin (\alpha)=363.8 \cdot \mathrm{kN} \quad\) Forces acting parallel to uncracked base & \\
\hline \(\mathrm{F}_{\text {perp0 }}:=\mathrm{Fhor}^{\text {h }} \cdot \sin (\alpha)+\mathrm{F}_{\text {Ver0 }} \cdot \cos (\alpha)=1200.0 \cdot \mathrm{kN} \quad\) Forces acting perpendicular to uncracked base & \\
\hline \[
\begin{aligned}
M_{\text {stab0 }}:= & \left(M_{\text {conc }}+M_{\text {log.Sum }}+M_{\text {slab }}+M_{\text {tower }}\right)+\left(M_{\text {US.Sum.Ver }}+M_{\text {DS.Sum.Hor }}+M_{\text {DS.Sum.Ver }}+M_{\text {Water.Above.Sum }}\right. \\
& +\left(M_{\text {US.silt.Ver }}+M_{\text {DS.fill.Hor }}+M_{\text {DS.fill.Ver }}+M_{\text {Granular.Sum }}\right) \ldots \\
& +\left(M_{\text {anchor.Ver }}+M_{\text {anchor.Hor }}+M_{\text {other.Hor. }}+M_{\text {other.Ver. }}\right)
\end{aligned}
\] & \begin{tabular}{l}
m)..\(=6231.8 \mathrm{kN} \cdot \mathrm{m}\) \\
Sum of stabilizing moments
\end{tabular} \\
\hline \(\mathrm{M}_{\text {Overturn0 }}:=(\) MUS.Sum.Hor + MgateH.Sum \()+(\) MUS.silt.Hor \()+\left(\mathrm{M}_{\text {U }}\right.\) ( Sum \()=2753.8 \mathrm{kN} \cdot \mathrm{m}\) & Sum of overturning moments \\
\hline \(\mathrm{M}_{\text {net0 }}:=\mathrm{M}_{\text {stab } 0}-\mathrm{M}_{\text {overturn } 0}=3478 \mathrm{kN} \cdot \mathrm{m}\) & Net resisting moment \\
\hline
\end{tabular}

GROUP

\section*{LC. 1 - Resultant and Bearing Stresses}
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{x}_{0}:=\frac{\mathrm{M}_{\text {net0 }}}{\mathrm{F}_{\text {perp0 }} 0}=2.9 \mathrm{~m}\) & Distance of resulant from right side of base (measured parallel to base) & \[
\begin{aligned}
& \mathrm{L} \text { incl }=7.95 \mathrm{~m} \\
& \mathrm{M}_{\mathrm{net} 0}=3478.0 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
\] \\
\hline \(\mathrm{E}_{0}:=\frac{\mathrm{L}_{\mathrm{incl}}}{2}-\mathrm{x}_{0}=1.08 \mathrm{~m}\) & Ecentricity of resultant (positive is to the right) & \(\mathrm{F}_{\text {perp0 }}=1200.0 \mathrm{kN}\) \\
\hline
\end{tabular}


\section*{Normal Stresses Acting on Base}


\section*{Location of Resultant}


Red lines indicate extent of structure, blue lines indicate middle half of base, orange lines indicate middle third of base

\section*{LC. 1 - Sliding}
\(\mathrm{FSS}_{0}(\theta):=\frac{\mathrm{F}_{\mathrm{comp} 0} \cdot \tan (\theta)+\mathrm{c} \cdot \mathrm{B} \cdot\left(\mathrm{L}_{\mathrm{comp} 0}+\frac{\mathrm{L}_{\text {tens0 }}}{2}\right)}{\mathrm{FSS}_{0}\left(\phi_{\mathrm{cf}}\right)=1.40}\) Fefine function to evaluate sliding using a range of friction angles
\[
\begin{aligned}
& \phi_{\mathrm{cf}}=23 \cdot \mathrm{deg} \\
& c=0 \\
& L_{\mathrm{incl}}=7.95 \mathrm{~m} \\
& \alpha=0 \cdot \mathrm{deg} \\
& B=1.67 \mathrm{~m} \\
& \hline
\end{aligned}
\]

GROUP

\section*{LC. 1 - Cracked Base Analysis}

Note: This program runs an interative analysis to determine the length of a crack along the concrete-foundation interface. The values for F.hor, F.ver, M.overturn, need to be modified for each load combination.
crackactive \(:=\left\lvert\, \begin{array}{ll}0 & \text { if } L_{\text {crack } 0}=0=0 \\ 1 & \text { otherwise }\end{array}\right.\)

1-Cracked Base Calculations
- Cracked Base Results
\(\square\) Store results for summary

Store (uncracked) results for Combined Analysis

\section*{Load Case 2. Usual Loading Winter Case ( \(D+H+S+U+I\) )}

\section*{LC. 2 - Summary of Forces}

\section*{Deadloads (D):}
\(\mathrm{W}_{\text {conc }}=1567.8 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {log. }}\). Win \(=0\)
\(\mathrm{W}_{\text {slab }}=0 \mathrm{kN}\)
\(\mathrm{W}_{\text {tower }}=0\)

\section*{Hydraulic (H):}

FUS.Win.Hor \(=130.8 \cdot \mathrm{kN}\)
FUS.Win.Ver \(=0 \cdot \mathrm{kN}\)
FDS.Win.Hor \(=0 \mathrm{kN}\)
FDS.Win.Ver \(=0 \mathrm{kN}\)
FgateH.Win \(=33.9 \mathrm{kN}\)
WWater.Above. Win \(=0\)
\(\mathrm{M}_{\mathrm{conc}}=6231.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\log \cdot \mathrm{Win}}=0\)
\(\mathrm{M}_{\text {slab }}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {tower }}=0\)

MUS.Win.Hor \(=174 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MUS.Win.Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MDS.Win.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.Win.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MgateH.Win \(=87.2 \mathrm{kN} \cdot \mathrm{m}\)
MWater.Above. Win \(=0\)

\section*{Soil (S):}

FUS.silt.Hor \(=0 \mathrm{kN}\)
WUS.silt \(=0 \mathrm{kN}\)
FDS.fill.Hor \(=0\)
\(\mathrm{W}_{\text {DS. fill }}=0\)
\(\mathrm{W}_{\text {Granular }} . \mathrm{Win}=0 \mathrm{kN}\)
MUS.silt.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MUS.silt.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(M_{\text {DS.fill. }}\) Hor \(=0\)
\(M_{\text {DS.fill.Ver }}=0\)
\(\mathrm{M}_{\text {Granular }}\) Win \(=0 \mathrm{kN} \cdot \mathrm{m}\)

\section*{Uplift (U):}

FU0.Win. Hor \(=0 \cdot \mathrm{kN}\)
MU0.Win \(=1381.2 \cdot \mathrm{kN} \cdot \mathrm{m}\)

FU0.Win.Ver \(=-260.6 \cdot \mathrm{kN}\)

\section*{Other Forces}

Fanchor.Hor \(=0\)
Fanchor.Ver \(=0\)
\(\mathrm{F}_{\text {other.Hor. } 1}=0\)
\(\mathrm{Manchor}_{\text {an }}\) Hor \(=0\)
Manchor.Ver \(=0\)
\(\mathrm{M}_{\text {other.Hor. } 1}=0\)
\(\mathrm{M}_{\text {other.Ver. } 1}=0\)
Ice (I):
Fice.usual \(=239.9 \cdot \mathrm{kN}\)
\(\mathrm{M}_{\text {ice }}\).usual \(=885.3 \cdot \mathrm{kN} \cdot \mathrm{m}\)

\section*{LC. 2 - Combine Forces and Moments}
\[
\begin{aligned}
& \text { Fh久rh: }=(\text { FUS.Win.Hor }- \text { FDS.Win.Hor }+ \text { FgateH.Win })+(\text { FUS.silt.Hor }- \text { FDS.fill.Hor }) . . .=404.6 \mathrm{kN} \\
& +\left(\mathrm{F}_{\mathrm{U} \text { 0.Win.Hor }}\right)+\left(\mathrm{F}_{\text {anchor.Hor }}+\mathrm{F}_{\text {other.Hor.1 }}\right)+\left(\mathrm{F}_{\text {ice. usual }}\right) \\
& \mathrm{F}_{\mathrm{Xe}} \mathrm{l} \text { : }:=\left(\mathrm{W}_{\text {conc }}+\mathrm{W}_{\text {log. }} \mathrm{Win}+\mathrm{W}_{\text {slab }}+\mathrm{W}_{\text {tower }}\right)+\left(\mathrm{F}_{\text {US.Win.Ver }}+\mathrm{F}_{\text {DS. Win.Ver }}+\mathrm{W}_{\text {Water.Above. Win }}\right) \ldots=1307.1 \mathrm{kN} \\
& +\left(\mathrm{W}_{\text {US.silt }}+\mathrm{W}_{\text {DS.fill }}+\mathrm{W}_{\text {Granular.Win }}\right)+\left(\mathrm{F}_{\mathrm{U} \text { 0.Win.Ver }}\right)+\left(\mathrm{F}_{\text {anchor.Ver }}+\mathrm{F}_{\text {other.Ver.1 }}\right) \\
& \text { FRarallell : }=\text { Fhor0 } \cdot \cos (\alpha)-F_{\text {ver0 }} \cdot \sin (\alpha)=404.6 \cdot \mathrm{kN} \\
& \mathrm{~F}_{\text {Rerkh }}:=\mathrm{Fhor}_{\text {0 }} \cdot \sin (\alpha)+\mathrm{F}_{\mathrm{ver}} \cdot \cos (\alpha)=1307.1 \cdot \mathrm{kN} \\
& \begin{aligned}
M_{\text {stab0 }}:= & \left(M_{\text {conc }}+M_{l o g . S u m}+M_{\text {slab }}+M_{\text {tower }}\right)+\left(M_{\text {US.Win.Ver }}+M_{\text {DS.Win.Hor }}+M_{\text {DS.Win.Ver }}+M_{\text {Water.Above.Win }}\right) \ldots \\
& +\left(M_{\text {DS.fill.Hor }}+M_{\text {DS.fill.Ver }}+M_{\text {US.silt.Ver }}+M_{\text {Granular.Win }}\right)+\left(M_{\text {anchor.Ver }}+M_{\text {anchor.Hor }}+M_{\text {other.Hor.1 }}+M_{\text {other.Ver. } 1}\right)
\end{aligned} \\
& M_{\text {MXerturn }}:=(\text { MUS.Win.Hor }+ \text { MgateH.Win })+(\text { MUS.silt.Hor })+\left(M_{U 0 . W i n}\right)+(\text { Mice.usual })=2527.7 \mathrm{kN} \cdot \mathrm{~m} \\
& \mathrm{M}_{\text {net }}:=\mathrm{M}_{\text {stab0 }}-\mathrm{M}_{\text {overturn0 }}=3704.2 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
\]

\section*{LC. 2 - Resultant and Bearing Stresses}



\section*{LC. 2 - Sliding}


\section*{LC. 2 - Cracked Base Analysis}

Note: This program runs an interative analysis to determine the length of a crack along the concrete-foundation interface. The values for F.hor, F.ver, M.overturn, need to be modified for each load combination.


Determines if the cracked analysis should run.

D-Cracked Base Calculations
Cracked Base Results
- Store results for summary

Store (uncracked) results for Combined Analysis

DESIGN CALCULATIONS

\section*{Load Case 3. Unusual Loading IDF ( \(D+H_{I D F}+S+U_{I D F}\) )}

\section*{LC. 3 - Summary of Forces}

\section*{Deadloads (D):}
\(\mathrm{W}_{\text {conc }}=1567.8 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {log. }}\) IDF \(=0\)
\(\mathrm{W}_{\text {slab }}=0 \mathrm{kN}\)
\(\mathrm{W}_{\text {tower }}=0\)

\section*{Hydraulic (H):}

FUS.IDF.Hor \(=353.6 \cdot \mathrm{kN}\)
FUS.IDF.Ver \(=0 \cdot \mathrm{kN}\)
FDS.IDF.Hor \(=207.9 \mathrm{kN}\)
FDS.IDF.Ver \(=0 \mathrm{kN}\)
\(\mathrm{F}_{\text {gateH. }}\) IDF \(=150.5 \mathrm{kN}\)
\(\mathrm{F}_{\text {drag }}=0\)
WWater. Above. \(I D F=0\)
\(\mathrm{M}_{\mathrm{conc}}=6231.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\mathrm{log} \cdot \mathrm{IDF}}=0\)
\(\mathrm{M}_{\text {slab }}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {tower }}=0\)

MUS.IDF.Hor \(=752.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MUS.IDF.Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MDS.IDF.Hor \(=348.5 \mathrm{kN} \cdot \mathrm{m}\)
MDS.IDF.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MgateH.IDF \(=477.9 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\mathrm{drag}}=0\)
MWater.Above. \(\mathrm{IDF}=0\)

\section*{Soil (S):}

FUS.silt.Hor \(=0 \mathrm{kN}\)
MUS.silt.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
WUS.silt \(=0 \mathrm{kN}\)
FDS.fill.IDF.Hor \(=0\)
\(\mathrm{W}_{\text {DS.fill. }}\) IDF \(=0\)
\(\mathrm{W}_{\text {Granular.IDF }}=0 \mathrm{kN}\)
MUS.silt.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.fill.IDF.Hor \(=0\)
\(M_{\text {DS.fill.IDF. }}\) Ver \(=0\)
\(\mathrm{M}_{\text {Granular.IDF }}=0 \mathrm{kN} \cdot \mathrm{m}\)

\section*{Uplift (U):}

> FU0.IDF.Hor \(=0 \cdot \mathrm{kN}\)
> FU0.IDF.Ver \(=-761.6 \cdot \mathrm{kN}\)
\(\mathrm{M}_{\mathrm{U} 0 . \mathrm{IDF}}=3165.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)

\section*{Other Forces:}
\begin{tabular}{|c|c|}
\hline Fanchor.Hor \(=0\) & \(\mathrm{Manchor}_{\text {a }}\) Hor \(=0\) \\
\hline Fanchor.Ver \(=0\) & Manchor.Ver \(=0\) \\
\hline Fother.Hor. \(1=0\) & \(\mathrm{M}_{\text {Other.Hor. } 1}=0\) \\
\hline \(\mathrm{Fother}_{\text {L }}\) Ver. \(1=0\) & M \({ }_{\text {other.Ver. }}\) ( \(=0\) \\
\hline
\end{tabular}

\section*{LC. 3 - Combine Forces and Moments}

```

 \(+\left(\mathrm{F}_{\mathrm{U} 0 . \mathrm{IDF} . H o r}\right)+\left(\mathrm{F}_{\text {anchor.Hor }}+\mathrm{F}_{\text {other.Hor. }}\right)\)
    ```

```

 \(+\left(\mathrm{W}_{\mathrm{US} \text {.silt }}+\mathrm{W}_{\text {DS.fill.IDF }}+\mathrm{W}_{\text {Granular.IDF }}\right)+\left(\mathrm{F}_{\mathrm{U} \text { 0.IDF.Ver }}\right)+\left(\mathrm{Fanchor}\right.\).Ver \(\left.+\mathrm{F}_{\text {other.Ver. }}\right)\)
 ${ }_{\text {WRadalleld }}:=$ Fhor0 $\cdot \cos (\alpha)-\mathrm{F}_{\mathrm{ver} 0} \cdot \sin (\alpha)=296.2 \cdot \mathrm{kN}$

```

```

$M_{\text {stabh }}:=\left(M_{\text {conc }}+M_{\text {log.IDF }}+M_{\text {slab }}+M_{\text {tower }}\right)+\left(M_{\text {US.IDF.Ver }}+M_{\text {DS.IDF. }}\right.$ Hor $\left.+M_{\text {DS.IDF.Ver }}+M_{\text {Water.Above.IDF }}\right) \ldots=6580.4 \mathrm{kN} \cdot \mathrm{m}$
$+\left(M_{U S}\right.$.silt.Ver $\left.+M_{\text {DS.fill.IDF.Hor }}+M_{\text {DS. fill.IDF.Ver }}+M_{\text {Granular.IDF }}\right)$...
$+\left(\mathrm{M}_{\text {anchor.Ver }}+\mathrm{M}_{\text {anchor.Hor }}+\mathrm{M}_{\text {other.Hor. }} 1+\mathrm{M}_{\text {other.Ver. }}\right)$

```

```

$\mathrm{M}_{\text {net }}:=\mathrm{M}_{\text {stab0 }}-\mathrm{M}_{\text {overturn }}=2183.9 \mathrm{kN} \cdot \mathrm{m}$

```

GROUP

\section*{LC. 3 - Resultant and Bearing Stresses}


\section*{Normal Stresses Acting on Base}



\section*{LC. 3 - Sliding}


\section*{LC. 3 - Cracked Base Analysis}

Note: This program runs an interative analysis to determine the length of a crack along the concrete-foundation interface. The values for F.hor, F.ver, M.overturn, need to be modified for each load combination.


1-Cracked Base Calculations

Cracked Base Results
- Store results for summary

Store (uncracked) results for Combined Analysis

\section*{Load Case 4. Unusual Loading Winter Case ( \(\mathrm{D}+\mathrm{H}+\mathrm{S}+\mathrm{U}+\mathrm{I}\) )}

\section*{LC. 4 - Summary of Forces}

\section*{Deadloads (D):}
\(\mathrm{W}_{\text {conc }}=1567.8 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {log. }}\) Win \(=0\)
\(\mathrm{M}_{\text {conc }}=6231.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{W}_{\text {slab }}=0 \mathrm{kN}\)
\(\mathrm{W}_{\text {tower }}=0\)
\(\mathrm{M}_{\text {log. Win }}=0\)
\(\mathrm{M}_{\text {slab }}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {tower }}=0\)

\section*{Hydraulic (H):}

FUS.Win.Hor \(=130.8 \cdot \mathrm{kN}\)
FUS.Win.Ver \(=0 \cdot \mathrm{kN}\)
FDS.Win.Hor \(=0 \mathrm{kN}\)
FDS.Win.Ver \(=0 \mathrm{kN}\)
FgateH.Win \(=33.9 \mathrm{kN}\)
\(\mathrm{W}_{\text {Water. }}\) Above. \(\mathrm{Win}=0\)

\section*{Soil (S):}
\(\mathrm{F}_{\text {US.silt. }}\) Hor \(=0 \mathrm{kN}\)
WUS.silt \(=0 \mathrm{kN}\)
FDS.fill.Hor \(=0\)
\(\mathrm{W}_{\text {DS.fill }}=0\)
\(\mathrm{W}_{\text {Granular }} . \mathrm{Win}=0 \mathrm{kN}\)
Uplift (U):

FU0.Win. Hor \(=0 \cdot \mathrm{kN}\)
FU0.Win.Ver \(=-260.6 \cdot \mathrm{kN}\)

\section*{Other Forces:}
\begin{tabular}{|c|c|}
\hline Fanchor.Hor \(=0\) & \(\mathrm{M}_{\text {anchor }}\).Hor \(=0\) \\
\hline Fanchor.Ver \(=0\) & Manchor.Ver \(=0\) \\
\hline Fother.Hor. \(1=0\) & \(\mathrm{M}_{\text {other.Hor. } 1}=0\) \\
\hline Fother.Ver. \(1=0\) & \(\mathrm{M}_{\text {other.Ver. } 1}=0\) \\
\hline Ice (1): & \\
\hline Fice \(=267.1 \cdot \mathrm{kN}\) & \(\mathrm{M}_{\text {ice }}=985.7 \cdot \mathrm{kN} \cdot \mathrm{m}\) \\
\hline
\end{tabular}

\section*{LC. 4 - Combine Forces and Moments}

```

 \(+(\) FU0.Win.Hor \()+\left(\mathrm{Fanchor}_{\text {anch }}\right.\) Hor \(\left.+\mathrm{F}_{\text {other.Hor. }}\right)+\left(\mathrm{F}_{\text {ice }}\right)\)
 $\mathrm{F}_{\mathrm{W} e \mathrm{r} \text { 人 }}:=\left(\mathrm{W}_{\text {conc }}+\mathrm{W}_{\text {log.Win }}+\mathrm{W}_{\text {slab }}+\mathrm{W}_{\text {tower }}\right)+\left(\right.$ FuS.Win.Ver $\left.+\mathrm{F}_{\text {DS. Win.Ver }}+\mathrm{W}_{\text {Water.Above.Win }}\right) \ldots=1307.1 \mathrm{kN}$
$+\left(\mathrm{W}_{\text {US.silt }}+\mathrm{W}_{\text {DS.fill }}+\mathrm{W}_{\text {Granular.Win }}\right)+\left(\mathrm{F}_{\mathrm{U}}\right.$.Win.Ver $)+\left(\mathrm{Fanchor}\right.$.Ver $\left.+\mathrm{F}_{\text {other.Ver. } 1}\right)$
${ }_{\text {FRakallell }}$: $=\mathrm{F}_{\mathrm{hor} 0} \cdot \cos (\alpha)-\mathrm{F}_{\mathrm{ver} 0} \cdot \sin (\alpha)=431.8 \cdot \mathrm{kN}$
${ }_{\text {Wherkh: }}=$ Fhor0 $^{2} \cdot \sin (\alpha)+\mathrm{F}_{\mathrm{ver} 0} \cdot \cos (\alpha)=1307.1 \cdot \mathrm{kN}$
$M_{\text {stabhl }}:=\left(M_{c o n c}+M_{l o g . S u m}+M_{\text {slab }}+M_{\text {tower }}\right)+\left(M_{\text {US.Win.Ver }}+M_{D S . W i n . H o r ~}+M_{D S}\right.$.Win.Ver + MWater.Above.Win $) \ldots$
$+\left(M_{\text {DS.fill.Hor }}+M_{\text {DS.fill.Ver }}+M_{\text {US.silt.Ver }}+M_{\text {Granular.Win }}\right)+\left(M_{\text {anchor.Ver }}+M_{\text {anchor.Hor }}+M_{\text {other.Hor. }}+M_{\text {other.Ver. }}\right)$

```


\section*{\(\mathrm{M}_{\mathrm{ndt}} \mathrm{A}_{\mathrm{C}}:=\mathrm{M}_{\mathrm{stab0} 0}-\mathrm{M}_{\text {overturn } 0}=3603.8 \mathrm{kN} \cdot \mathrm{m}\)}

\section*{LC. 4 - Resultant and Bearing Stresses}


\section*{Normal Stresses Acting on Base}



Red lines indicate extent of structure, blue lines indicate middle half of base, orange lines indicate middle third of base

\section*{LC. 4 - Sliding}


DESIGN CALCULATIONS

\section*{LC. 4 - Cracked Base Analysis}

Note: This program runs an interative analysis to determine the length of a crack along the concrete-foundation interface. The values for F.hor, F.ver, M.overturn, need to be modified for each load combination.
~rackactive \(:=\left\lvert\, \begin{array}{ll}0 & \text { if } L_{\text {crack }}=0 \\ 1 & \text { otherwise }\end{array}\right.\)
- Cracked Base Calculations

Cracked Base Results
- Store results for summary

Store (uncracked) results for Combined Analysis

\section*{Load Case 5. Extreme Loading Earthquake ( \(D+H+S+Q+U_{Q}\) )}

\section*{LC. 5 - Summary of Forces}

\section*{Deadloads (D):}
\(\mathrm{W}_{\text {conc }}=1567.8 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {log. Sum }}=0\)
\(\mathrm{W}_{\text {slab }}=0 \mathrm{kN}\)
\(\mathrm{W}_{\text {tower }}=0\)

\section*{Hydraulic (H):}

FUS.Sum.Hor \(=260.4 \cdot \mathrm{kN}\)
FUS.Sum.Ver \(=0 \cdot \mathrm{kN}\)

FDS.Sum.Hor \(=0 \mathrm{kN}\)
FDS.Sum.Ver \(=0 \mathrm{kN}\)
\(\mathrm{F}_{\text {gateH.Sum }}=103.4 \mathrm{kN}\)
\(\mathrm{W}_{\text {Water.Above.Sum }}=0\)

\section*{Soil (S):}

FUS.silt.Hor \(=0 \mathrm{kN}\)
WUS.silt \(=0 \mathrm{kN}\)
FDS.fill.Hor \(=0\)
\(\mathrm{W}_{\text {DS.fill }}=0\)
\(\mathrm{W}_{\text {Granular. }} \mathrm{EQ}=0 \mathrm{kN}\)

\section*{Uplift (U):}

FU0.Sum.Hor \(=0 \cdot \mathrm{kN} \quad\) MU0.Sum \(=1949 \cdot \mathrm{kN} \cdot \mathrm{m}\)
FU0.Sum.Ver \(=-367.7 \cdot \mathrm{kN}\)

\section*{Other Forces:}
\(\mathrm{F}_{\text {anchor. }}\) Hor \(=0\)
\(\mathrm{M}_{\text {anchor }}\) Hor \(=0\)
Fanchor.Ver \(=0\)
\(\mathrm{F}_{\text {other. }}\) Hor. \(1=0\)
Fother.Ver. \(1=0\)
Manchor .Ver \(=0\)
\(\mathrm{M}_{\text {other.Hor. } 1}=0\)
\(\mathrm{M}_{\text {other.Ver. } 1}=0\)
Seismic (Q):
Feq.conc.Hor \(=130.8 \mathrm{kN}\)
\(\mathrm{M}_{\mathrm{eq}} \cdot \mathrm{conc} \cdot \mathrm{Hor}=370.7 \mathrm{kN} \cdot \mathrm{m}\)

Feq.conc. \(\mathrm{Ver}=87.2 \mathrm{kN}\)
\(\mathrm{F}_{\text {eq.log. }}\) Hor \(=0\)
\(\mathrm{F}_{\text {eq. }}\) log. \(\mathrm{Ver}=0\)
Feq.slab. Hor \(=0 \mathrm{kN}\)
Feq.slab.Ver \(=0 \mathrm{kN}\)
Feq.tower. \(\mathrm{Hor}=0\)
Feq.tower.Ver \(=0\)

Feq.HD.US \(=23.3 \mathrm{kN}\)
Feq.HD.gate \(=9 \mathrm{kN}\)
\(\mathrm{F}_{\text {eq.silt. }}\) Hor \(=0 \mathrm{kN}\)
\(\mathrm{Feq}_{\text {eqilt. }}\) Ver \(=0 \mathrm{kN}\)
\(\mathrm{F}_{\text {eq.fill.Hor }}=0\)
\(\mathrm{F}_{\text {eq.fill.Ver }}=0\)
Feq.Granular.Ver \(=0 \mathrm{kN}\)
Feq.Granular.Hor \(=0 \mathrm{kN}\)
Feq.Water.Above.Ver \(=0\)
Feq.Water.Above. Hor \(=0\)

Meq.conc. \(\mathrm{Ver}=346.5 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq. }}\) log. \(\mathrm{Hor}=0\)
\(\mathrm{M}_{\mathrm{eq} \cdot \log . \mathrm{Ver}}=0\)
Meq.slab.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq.slab.Ver }}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq.tower. }}\) Hor \(=0\)
Meq.tower.Ver \(=0\)
\(\mathrm{M}_{\mathrm{eq}} \cdot \mathrm{HD} . \mathrm{US}=52.8 \mathrm{kN} \cdot \mathrm{m}\)
Meq.HD.gate \(=32.1 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq. }}\) silt. \(\mathrm{Hor}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(M_{\text {eq.silt.Ver }}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(M_{\text {eq.fill.Hor }}=0\)
\(M_{\text {eq.fill.Ver }}=0\)
Meq.Granular. Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
Meq.Granular. Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\mathrm{eq} . \text { Water.Above.Ver }}=0\)
Meq.Water.Above.Hor \(=0\)

\section*{DESIGN CALCULATIONS}

\section*{LC. 5 - Combine Forces and Moments}

```

 \(=526.8 \mathrm{kN}\)
 \(+\left(\mathrm{F}_{\mathrm{U} 0 . S u m . H o r}\right)+\left(\mathrm{F}_{\text {anchor.Hor }}+\mathrm{F}_{\text {other.Hor.1 }}\right) \ldots\)
    ```

```

FXerCh: $=\left(\mathrm{W}_{\text {conc }}+\mathrm{W}_{\text {log.Sum }}+\mathrm{W}_{\text {Slab }}+\mathrm{W}_{\text {tower }}\right)+\left(\mathrm{F}_{\text {US.Sum.Ver }}+\mathrm{F}_{\text {DS.Sum.Ver }}+\mathrm{W}_{\text {Water.Above.Sum }}\right) \ldots=1112.9 \mathrm{kN}$
$+\left(\mathrm{W}_{\mathrm{US}}\right.$. silt $\left.+\mathrm{W}_{\mathrm{DS} . f \text { fill }}+\mathrm{W}_{\text {Granular.EQ }}\right)+\left(\mathrm{F}_{\mathrm{U} 0 . S u m . V e r}\right)+\left(\mathrm{F}_{\text {anchor.Ver }}+\mathrm{F}_{\text {other.Ver. } 1}\right) .$.
$+\left(-\mathrm{F}_{\text {eq.conc.Ver }}-\mathrm{F}_{\text {eq.log.Ver }}-\mathrm{F}_{\text {eq.slab.Ver }}-\mathrm{F}_{\text {eq.tower.Ver }}-\mathrm{F}_{\text {eq.silt.Ver }}-\mathrm{F}_{\text {eq.fill.Ver }}-\mathrm{F}_{\text {eq.Granular.Ver }}-\mathrm{F}_{\text {eq. }}\right.$.Water.Above.Ver $)$
FRaralleld $^{\text {F }}=$ Fhor0 $\cdot \cos (\alpha)-\mathrm{F}_{\text {ver0 }} \cdot \sin (\alpha)=526.8 \cdot \mathrm{kN}$

```

```

$M_{\text {stabh }}:=\left(M_{\text {conc }}+M_{l o g . S u m}+M_{\text {slab }}+M_{\text {tower }}\right)+\left(M_{U S . S u m . V e r}+M_{D S . S u m . H o r}+M_{D S . S u m . V e r}+M_{\text {Water.Above.Sum }}\right) \ldots \quad=6231.8 \mathrm{kN} \cdot \mathrm{m}$
$+\left(M_{\text {DS.fill.Hor }}+M_{\text {DS.fill.Ver }}+M_{\text {US.silt.Ver }}+M_{\text {Granular.EQ }}\right)+\left(M_{\text {anchor.Ver }}+M_{\text {anchor.Hor }}+M_{\text {other.Hor.1 }}+M_{\text {other.Ver.1 }}\right)$

```




\(\mathrm{M}_{\text {neth }}:=\mathrm{M}_{\text {stab0 }}-\mathrm{M}_{\text {overturn0 }}=2675.9 \mathrm{kN} \cdot \mathrm{m}\)

\section*{LC. 5 - Resultant and Bearing Stresses}


D- Stress Calculations
\(\mathrm{q} \max 0=184.2 \mathrm{kPa} \quad \mathrm{q} \quad \mathrm{min} 0=0.0 \mathrm{kPa}\)
\(\mathrm{L}_{\text {comp0 }}=7.21 \mathrm{~m}\)
\(\mathrm{L}_{\text {tens }}=0.00 \mathrm{~m}\)
\(\mathrm{L}_{\text {crack.eq }}:=\mathrm{L}_{\text {crack0 }}=0.74 \mathrm{~m}\)

\[
\underset{\text { Ftensh }}{ }: \frac{\mathrm{B} \cdot \mathrm{q}_{\min 0} \cdot \mathrm{~L}_{\text {tens0 }}}{2}=0 \mathrm{kN}
\]
\[
\frac{\mathrm{L}_{\text {comp0 }}}{\mathrm{L}_{\text {incl }}}=90.7 \cdot \% \quad \frac{\mathrm{~L}_{\text {tens0 }}}{\mathrm{L}_{\text {incl }}}=0 \cdot \% \quad \frac{\mathrm{~L}_{\text {crack0 }}}{\mathrm{L}_{\text {incl }}}=9.3 \cdot \%
\]

GROUP

\section*{Normal Stresses Acting on Base \\  \\  \\ Red lines indicate extent of structure, blue lines indicate middle half of base, orange lines indicate middle third of base}

\section*{LC. 5 - Sliding}


\section*{LC. 5 - Cracked Base Analysis}

Note: Iterative cracked base analysis does not occur during seismic conditions. Initial uplift pressures are assumed to be maintained even if cracking occurs, as per CDA guidelines.
- Store results for summary

Store (uncracked) results for Combined Analysis

\section*{Load Case 6. Post-Earthquake ( \(\mathrm{D}+\mathrm{H}+\mathrm{S}+\mathrm{U}_{P Q}\) L}

\section*{LC.6(U) - Uplift}
\(\nabla\) Updated uplift calculations
\(\mathrm{L}_{\text {chack }} \mathrm{L}_{\mathrm{c}}:=\mathrm{L}_{\text {crack.eq }}=0.74 \mathrm{~m}\)
\[
\begin{aligned}
& P_{U . e q}(x):=P_{U L}\left(x, L_{\text {crack } 0}, P_{\text {USUL.Sum }}, P_{\text {DSUL.Sum }}\right) \\
& F_{U 0 . e q}:=\int_{0}^{L_{i n c l}} P_{U . e q}(x) \cdot B d x=401.8 \cdot \mathrm{kN} \\
& M A:=L_{i n c l}-\frac{1}{\text { FU0.eq }^{\prime}}\left(\int_{0}^{L_{i n c l}} P_{U . e q}(x) \cdot x \cdot B d x\right)=5.28 m \\
& \text { MU0.eq }:=F_{U 0 . e q} \cdot \mathrm{MA}=2120.9 \cdot \mathrm{kN} \cdot \mathrm{~m} \\
& \mathrm{~F}_{\mathrm{U} 0} \text {.eq.Hor }:=-\mathrm{F}_{\mathrm{U}} 0 . \mathrm{eq} \cdot \sin (\alpha)=0 \cdot \mathrm{kN} \\
& \mathrm{~F}_{\mathrm{U}} 0 . \text {.eq.Ver }:=-\mathrm{F}_{\mathrm{U}} 0 . \mathrm{eq} \cdot \cos (\alpha)=-401.8 \cdot \mathrm{kN}
\end{aligned}
\]

\section*{Uplift Pressure Diagram (Uncracked Base)}

- Updated uplift calculations

\section*{LC. 6 - Summary of Forces}

\section*{Deadloads (D):}
\(\mathrm{W}_{\text {conc }}=1567.8 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {log.Sum }}=0\)
\(\mathrm{W}_{\text {slab }}=0 \mathrm{kN}\)
\(\mathrm{W}_{\text {tower }}=0\)

\section*{Hydraulic (H):}

FUS.Sum.Hor \(=260.4 \cdot \mathrm{kN}\)
FUS.Sum.Ver \(=0 \cdot \mathrm{kN}\)
FDS.Sum.Hor \(=0 \mathrm{kN}\)
FDS.Sum.Ver \(=0 \mathrm{kN}\)
FgateH.Sum \(=103.4 \mathrm{kN}\)
\(\mathrm{W}_{\text {Water.Above.Sum }}=0\)

\section*{Soil (S):}
\begin{tabular}{|c|c|}
\hline WUS．silt \(=0 \mathrm{kN}\) & MUS．silt．Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\) \\
\hline FDS．fill．Hor \(=0\) & M \({ }_{\text {DS } . f i l l . ~}^{\text {Hor }}\)＝ 0 \\
\hline \(\mathrm{W}_{\text {DS．fill }}=0\) & \(M_{\text {DS．}}\) fill．Ver \(=0\) \\
\hline \(\mathrm{W}_{\text {Granular．Post．EQ }}=0 \mathrm{kN}\) & \(\mathrm{M}_{\text {Granular．Post．EQ }}=0 \mathrm{kN} \cdot \mathrm{m}\) \\
\hline \multicolumn{2}{|l|}{Uplift（U）：} \\
\hline \(\mathrm{F}_{\mathrm{U} 0 . \mathrm{eq} . \mathrm{Hor}}=0 \cdot \mathrm{kN}\) & \(\mathrm{M}_{\mathrm{U} 0 . \mathrm{eq}}=2120.9 \cdot \mathrm{kN} \cdot \mathrm{m}\) \\
\hline FU0．eq．Ver \(=-401.8 \cdot \mathrm{kN}\) & \\
\hline
\end{tabular}

\section*{Other Forces：}
\(\mathrm{F}_{\text {anchor }}\) ．Hor \(=0\)
\(\mathrm{Manchor}_{\text {and }}\) Hor \(=0\)
Fanchor．Ver \(=0\)
\(\mathrm{F}_{\text {other．Hor．} 1}=0\)
Fother．Ver． \(1=0\)
\(\mathrm{M}_{\text {anchor }}\) ．Ver \(=0\)
\(\mathrm{M}_{\text {other．Hor．} 1}=0\)
\(\mathrm{M}_{\text {other．Ver．} 1}=0\)

\section*{LC． 6 －Combine Forces and Moments}
\[
\begin{aligned}
& \mathrm{FhgrO}_{\mathrm{i}}:=\left(\mathrm{F}_{\mathrm{US} \text {.Sum.Hor }}-\mathrm{F}_{\text {DS.Sum.Hor }}+\mathrm{F}_{\text {gateH.Sum }}\right)+\left(\mathrm{F}_{\mathrm{US} \text {.silt.Hor }}-\mathrm{F}_{\mathrm{DS} \text {.fill.Hor }}\right) \ldots=363.8 \mathrm{kN} \\
& +\left(\mathrm{F}_{\mathrm{U} 0 . \mathrm{eq} . \text { Hor }}\right)+\left(\mathrm{Fanchor} \text {.Hor }+\mathrm{F}_{\text {other.Hor.1 }}\right) \\
& \mathrm{FXerRh}^{2}:\left(\mathrm{W}_{\text {conc }}+\mathrm{W}_{\text {log.Sum }}+\mathrm{W}_{\text {slab }}+\mathrm{W}_{\text {tower }}\right)+\left(\mathrm{F}_{\text {US.Sum.Ver }}+\mathrm{F}_{\text {DS.Sum.Ver }}+\mathrm{W}_{\text {Water.Above.Sum }}\right) \ldots=1166 \mathrm{kN} \\
& +\left(\mathrm{W}_{\text {US.silt }}+\mathrm{W}_{\text {DS.fill }}+\mathrm{W}_{\text {Granular.Post.EQ }}\right)+(\text { FU0.eq.Ver })+\left(\mathrm{Fanchor} \text {.Ver }+\mathrm{F}_{\text {other.Ver.1 }}\right) \\
& \text { FARaralleld } 0 \text { : }^{\prime}=\text { Fhor0 }^{2} \cdot \cos (\alpha)-\mathrm{F}_{\text {ver0 }} \cdot \sin (\alpha)=363.8 \cdot \mathrm{kN} \\
& { }_{\text {WRernh }}:=F_{\text {hor0 }} \cdot \sin (\alpha)+F_{\text {ver0 }} \cdot \cos (\alpha)=1166.0 \cdot \mathrm{kN} \\
& M_{\text {stabh久 }}:=\left(M_{\text {conc }}+M_{\text {log.Sum }}+M_{\text {slab }}+M_{\text {tower }}\right)+\left(M_{U S . S u m . V e r ~}+M_{D S . S u m . H o r}+M_{D S . S u m . V e r}+M_{\text {Water.Above.Sum }}\right) \ldots \\
& =6231.8 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
\]
\[
\begin{aligned}
& M_{\text {QXextuxn见 }}:=(\text { MUS.Sum.Hor }+ \text { MgateH.Sum })+(\text { MUS.silt.Hor })+(\text { MU0.eq })=2925.8 \mathrm{kN} \cdot \mathrm{~m} \\
& \mathrm{M}_{\text {neth }}:=\mathrm{M}_{\text {stab0 }}-\mathrm{M}_{\text {overturn0 }}=3306.1 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
\]

GROUP

\section*{LC. 6 - Resultant and Bearing Stresses}


\section*{Normal Stresses Acting on Base}


Red lines indicate extent of structure, blue lines indicate middle half of base, orange lines indicate middle third of base

\section*{LC. 6 - Sliding}

\section*{DESIGN CALCULATIONS}


\section*{LC. 6 - Cracked Base Analysis}

Note: This program runs an interative analysis to determine the length of a crack along the concrete-foundation interface. The values for F.hor, \(\overline{F . v e r,}\) M.overturn, need to be modified for each load combination.
crackactive \(:=\left\lvert\, \begin{array}{ll}1 & \text { if } L_{\text {crack }}>L_{\text {crack.eq }} \\ 0 & \text { otherwise }\end{array}\right.\)
Determines if the cracked analysis should run.

1- Cracked Base Analysis

Cracked Base Results

1- Store results for summary

Store (uncracked) results for Combined Analysis

\section*{Summary of Forces/Moments}

\section*{Dead Loads (and related seismic)}
\(\mathrm{W}_{\text {conc }}=1567.8 \cdot \mathrm{kN}\)
Feq.conc. Hor \(=130.8 \mathrm{kN}\)
Feq.conc.Ver \(=87.2 \mathrm{kN}\)
\(\mathrm{W}_{\text {log. }}\) Sum \(=0\)
\(\mathrm{W}_{\text {log. }}\). Win \(=0\)
\(\mathrm{W}_{\text {log. }}\) IDF \(=0\)

Feq.log. \(\mathrm{Hor}=0\)
Feq.log.Ver \(=0\)
\(\mathrm{W}_{\text {slab }}=0 \mathrm{kN}\)
Feq.slab.Hor \(=0 \mathrm{kN}\)
Feq.slab.Ver \(=0 \mathrm{kN}\)
\(\mathrm{W}_{\text {tower }}=0\)
\(\mathrm{F}_{\text {eq. }}\) tower. \(\mathrm{Hor}=0\)
Feq.tower.Ver \(=0\)
\(M_{\text {conc }}=6231.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq.conc. }}\) Hor \(=370.7 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq.conc. }}\) Ver \(=346.5 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {log. }}\) Sum \(=0\)
\(\mathrm{M}_{\mathrm{log}}\). Win \(=0\)
\(\mathrm{M}_{\text {log. }}\) Win \(=0\)

Meq.log.Hor \(=0\)
\(\mathrm{M}_{\mathrm{eq}} \cdot \log\). Ver \(=0\)
\(\mathrm{M}_{\text {slab }}=0 \mathrm{kN} \cdot \mathrm{m}\)
Meq. slab.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq. }}\) slab.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {tower }}=0\)
Meq.tower.Hor \(=0\)
Meq.tower.Ver \(=0\)

\section*{Soil Loads (and related seismic)}

FUS.silt.Hor \(=0 \mathrm{kN}\)
\(\mathrm{F}_{\text {eq. }}\) silt. \(\mathrm{Hor}=0 \mathrm{kN}\)
WUS.silt \(=0 \mathrm{kN}\)
Feq.silt.Ver \(=0 \mathrm{kN}\)
\(\mathrm{F}_{\mathrm{DS}}\).fill.Hor \(=0\)
Feq.fill.Hor \(=0\)
\(\mathrm{F}_{\text {eq.fill.Ver }}=0\)
\(\mathrm{W}_{\text {DS.fill }}=0\)
\(\mathrm{W}_{\text {Granular.Sum }}=0 \mathrm{kN}\)
Feq.Granular.Ver \(=0 \mathrm{kN}\)
Feq.Granular.Hor \(=0 \mathrm{kN}\)

\section*{Uplift Forces}

FU0.Sum \(=367.7 \mathrm{kN}\)
FU0.Sum.Hor \(=0 \cdot \mathrm{kN}\)
FU0.Sum.Ver \(=-367.7 \cdot \mathrm{kN}\)
\(\mathrm{F}_{\mathrm{U} 0}\).Win \(=260.6 \mathrm{kN}\)
FU0.Win.Hor \(=0 \cdot \mathrm{kN}\)
FU0.Win.Ver \(=-260.6 \cdot \mathrm{kN}\)
\(\mathrm{F}_{\mathrm{U}} 0 . \mathrm{IDF}=761.6 \mathrm{kN}\)
FU0.IDF.Hor \(=0 \cdot \mathrm{kN}\)
FU0.IDF.Ver \(=-761.6 \cdot \mathrm{kN}\)
\(\mathrm{F}_{\mathrm{U} 0 . \mathrm{eq}}=401.8 \mathrm{kN}\)
\(\mathrm{F}_{\mathrm{U}}\).eq. Hor \(=0 \cdot \mathrm{kN}\)
\(\mathrm{F}_{\mathrm{U}} 0\). eq. Ver \(=-401.8 \cdot \mathrm{kN}\)
\(\mathrm{M}_{\mathrm{U} 0 . \mathrm{IDF}}=3165.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MUS.silt.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq. }}\) silt.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MUS.silt.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\mathrm{eq} \cdot \mathrm{silt} . \text { Ver }}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {DS. fill. }}\) Hor \(=0\)
\(\mathrm{M}_{\mathrm{eq} . \mathrm{fill}} . \mathrm{Hor}=0\)
\(\mathrm{M}_{\text {eq.fill.Ver }}=0\)
\(M_{\text {DS.fill.Ver }}=0\)
\(\mathrm{M}_{\text {Granular.Sum }}=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq. }}\) Granular. Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
Meq.Granular.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)

MU0.Sum \(=1949 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\mathrm{U} 0 . W \text { in }}=1381.2 \cdot \mathrm{kN} \cdot \mathrm{m}\)
-
\(M_{U 0 . e q}=2120.9 \cdot \mathrm{kN} \cdot \mathrm{m}\)

\section*{Hydraulic Forces (and related seismic)}

FUS.Sum.Hor \(=260.4 \cdot \mathrm{kN}\)
Feq.HD.US \(=23.3 \mathrm{kN}\)
FUS.Sum.Ver \(=0 \cdot \mathrm{kN}\)
\(\mathrm{W}_{\text {Water. }}\) Above. Sum \(=0\)
\(\mathrm{F}_{\text {eq }}\).Water.Above. \(\mathrm{Ver}=0\)
Feq.Water.Above. Hor \(=0\)

FUS.Win.Hor \(=130.8 \cdot \mathrm{kN}\)
FUS.Win.Ver \(=0 \cdot \mathrm{kN}\)
WWater.Above. Win \(=0\)
FUS.IDF.Hor \(=353.6 \cdot \mathrm{kN}\)
FUS.IDF.Ver \(=0 \cdot \mathrm{kN}\)
WWater. Above.IDF \(=0\)

FDS.Sum.Hor \(=0 \mathrm{kN}\)
FDS.Sum.Ver \(=0 \mathrm{kN}\)
FDS.Win.Hor \(=0 \mathrm{kN}\)
FDS.Win.Ver \(=0 \mathrm{kN}\)
FDS.IDF.Hor \(=207.9 \mathrm{kN}\)
FDS.IDF.Ver \(=0 \mathrm{kN}\)
\(\mathrm{F}_{\text {gateH. }}\) Sum \(=103.4 \mathrm{kN}\)
Feq.HD.gate \(=9 \mathrm{kN}\)
FgateH.Win \(=33.9 \mathrm{kN}\)
FgateH.IDF \(=150.5 \mathrm{kN}\)
\(\mathrm{F}_{\text {drag }}=0\)

\section*{Ice Loads}

Fice. \(1=139.9 \mathrm{kN}\)
Fice.gate \(=127.3 \mathrm{kN}\)
Fice \(=267.1 \mathrm{kN}\)

Fice.1.usual \(=125.6 \mathrm{kN}\)
Fice.gate.usual \(=114.3 \mathrm{kN}\)
Fice. usual \(=239.9 \mathrm{kN}\)

\section*{Other Forces:}

Fanchor.Hor \(=0\)
Fanchor.Ver \(=0\)
\(\mathrm{F}_{\text {other.Hor. } 1}=0\)
Fother.Ver.1 \(=0\)

MUS.Sum.Hor \(=488.7 \cdot \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq. }}\) HD.US \(=52.8 \mathrm{kN} \cdot \mathrm{m}\)
MUS.Sum.Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MWater.Above.Sum \(=0\)
Meq.Water.Above.Ver \(=0\)
\(\mathrm{M}_{\mathrm{eq}}\).Water.Above. \(\mathrm{Hor}=0\)

MUS.Win.Hor \(=174 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MUS.Win.Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MWater.Above. Win \(=0\)
MUS.IDF.Hor \(=752.8 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MUS.IDF.Ver \(=0 \cdot \mathrm{kN} \cdot \mathrm{m}\)
MWater.Above.IDF \(=0\)

MDS.Sum.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.Sum.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.Win.Hor \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.Win.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
MDS.IDF.Hor \(=348.5 \mathrm{kN} \cdot \mathrm{m}\)
MDS.IDF.Ver \(=0 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{MgateH}_{\text {g }}\) Sum \(=316.1 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {eq. }}\) HD.gate \(=32.1 \mathrm{kN} \cdot \mathrm{m}\)
MgateH.Win \(=87.2 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {gateH }} \cdot \mathrm{IDF}=477.9 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {drag }}=0\)
\(\mathrm{M}_{\mathrm{ice} .1}=516.1 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {ice.gate }}=469.6 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {ice }}=985.7 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {ice. } 1 . \text { usual }}=463.6 \mathrm{kN} \cdot \mathrm{m}\)
\(\mathrm{M}_{\text {ice. gate. usual }}=421.8 \mathrm{kN} \cdot \mathrm{m}\) \(\mathrm{M}_{\text {ice }}\).usual \(=885.3 \mathrm{kN} \cdot \mathrm{m}\)

\footnotetext{
Manchor .Hor \(=0\)
\(M_{\text {anchor. Ver }}=0\)
\(\mathrm{M}_{\mathrm{other}}\).Hor. \(1=0\)
\(\mathrm{M}_{\text {other.Ver. } 1}=0\)
}

\section*{Results of Analysis}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { FSS } \\
\text { (Ф.cf) }
\end{gathered}
\] & E (m) & X. O (m) & \begin{tabular}{l}
L.comp \\
(m)
\end{tabular} & \% of Base in Compression & L.crack (m) & F.hor (kN) & \begin{tabular}{l}
F.ver \\
(kN)
\end{tabular} & F.parallel (kN) & F.Perp (kN) & \[
\begin{gathered}
\text { q.max } \\
\text { (kPa) }
\end{gathered}
\] \\
\hline LC. 1 - Summer & 1.40 & 1.08 & 2.90 & 7.95 & 100\% & 0.00 & 363.8 & 1,200.0 & 363.8 & 1,200.0 & 163.3 \\
\hline LC. 2 - Winter (Usual) & 1.37 & 1.14 & 2.83 & 7.95 & 100\% & 0.00 & 404.6 & 1,307.1 & 404.6 & 1,307.1 & 182.7 \\
\hline LC. 3 - IDF & 1.16 & 1.27 & 2.71 & 7.95 & 100\% & 0.00 & 296.2 & 806.2 & 296.2 & 806.2 & 118.4 \\
\hline LC. 4 - Winter (Unusual) & 1.28 & 1.22 & 2.76 & 7.95 & 100\% & 0.00 & 431.8 & 1,307.1 & 431.8 & 1,307.1 & 188.4 \\
\hline LC. 5 - EQ & 0.90 & 1.57 & 2.40 & 7.21 & 91\% & 0.74 & 526.8 & 1,112.9 & 526.8 & 1,112.9 & 184.2 \\
\hline LC. 6 - Post - EQ & 1.36 & 1.14 & 2.84 & 7.95 & 100\% & 0.74 & 363.8 & 1,166.0 & 363.8 & 1,166.0 & 162.9 \\
\hline
\end{tabular}

\section*{Location of Resultant}


LC 1


LC 2


\section*{LC 3}

\section*{DESIGN CALCULATIONS}



\section*{References}

Pier
\(\rightarrow\) Reference:U:\FMS\17-3212-001\CIV-004 Howson Dam S - Pier (no Deck) -HS YF.xmcd(R)
Rollway
\(\rightarrow\) Reference:P:\Projects\2017\17-3212-001\Design\Struct\HS\MathCad\S Structure\CIV-002 Howson Dam S - Sill Section HS YF.xmcd

\section*{Properties of Materials}
hct \(:=23 \cdot \mathrm{deg}\)
Friction angle of concrete/foundation interface
\(\mathrm{f}_{\mathrm{t}}:=0 \mathrm{MPa}\)
Tensile strength at concrete/rock interface (generally set to 0). This is a negative number.
\(\mathrm{c}:=0 \mathrm{MPa}\)
Cohesion at concrete/foundation interface (generally set to 0)

\section*{Geometry of Structures}

Bier \(=1.67 \mathrm{~m}\)
\(L_{\text {incl. }}\) pier \(=7.95 \mathrm{~m}\)
\(\alpha_{\text {pier }}=0 \cdot\) deg
\(\mathrm{B}:=\mathrm{B}_{\text {pier }}+\mathrm{B}_{\text {roll }}=11.6 \mathrm{~m}\)
\(\mathrm{L}_{\text {Lincl }}:=\frac{\mathrm{L}_{\text {incl. }} \text { pier }+\mathrm{L}_{\text {incl. }} \text { roll }}{2}=7.08 \mathrm{~m}\)
\(\alpha_{\text {avg }}:=\frac{\alpha_{\text {pier }}+\alpha_{\text {roll }}}{2}=0 \cdot \operatorname{deg}\)

\section*{Load Case 1. Usual Loading Summer Case ( \(D+H+S+U\) )}

\section*{\(L C=1\)}

\section*{LC. 1 - Forces from Structures}
\begin{tabular}{|c|}
\hline Fhor.pier \({ }_{\mathrm{LC}}=363.8 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{FVer}_{\text {vipier }}^{\text {LC }}\) \(=1200 \cdot \mathrm{kN}\) \\
\hline \({\text { Fperp. } \text { pier }_{\text {LC }}=1200 \cdot \mathrm{kN}}^{\text {a }}\) \\
\hline \(\mathrm{F}_{\text {para.pier }}^{\text {LC }}\) \(=363.8 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{L}_{\text {comp.pier }}^{\text {LC }}\) ( \(=8 \mathrm{~m}\) \\
\hline \(\mathrm{M}_{\text {net.pier }} \mathrm{LC}\) \(=3478 \cdot \mathrm{kN} \cdot\) \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline Fhor.roll \(_{\mathrm{LC}}=1007.4 \mathrm{kN}\) \\
\hline \(\mathrm{F}_{\text {ver.roll }}^{\mathrm{LC}}=2010.2 \cdot \textrm{kN}\) \\
\hline \(\mathrm{~F}_{\text {perp.roll }}^{\mathrm{LC}}=2010.2 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{F}_{\text {para.roll }} \mathrm{LC}=1007.4 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{L}_{\text {comp.roll }} \mathrm{LC}=6.2 \mathrm{~m}\) \\
\hline \(\mathrm{M}_{\text {net.roll }} \mathrm{LC}=6099.8 \cdot \mathrm{kN} \cdot \mathrm{m}\) \\
\hline
\end{tabular}

Force acting in horizontal direction on structure
Forces acting in vertical direction on structure
Force acting perpendicular to base from structure
Force acting parallel to base from structure
Length of base in compression

Net resisting moment from structure

\section*{LC. 1 - Combine Forces and Moments}
\[
\begin{aligned}
& \text { Ehrl: }=\text { Fhor.pier }_{\text {LC }}+\text { Fhor.roll }_{\text {LC }}=1371.2 \cdot \mathrm{kN} \\
& \mathrm{~F}_{\mathrm{NXer}}:=\mathrm{F}_{\text {ver.pier }}^{\mathrm{LC}}{ }+\mathrm{F}_{\text {ver.roll }}^{\text {LC }}=3210.2 \cdot \mathrm{kN}
\end{aligned}
\]
\(\mathrm{F}_{\text {Warallel }: ~}=\mathrm{F}_{\text {hor }} \cdot \cos \left(\alpha_{\text {avg }}\right)+\mathrm{F}_{\text {ver }} \cdot \sin \left(\alpha_{\text {avg }}\right)=1371.2 \cdot \mathrm{kN}\)
F \(_{\text {Whetri }}:=-\) Fhor \(_{\text {h }} \cdot \sin \left(\alpha_{\text {avg }}\right)+\mathrm{F}_{\text {ver }} \cdot \cos \left(\alpha_{\text {avg }}\right)=3210.2 \cdot \mathrm{kN}\)


\section*{LC. 1 - Resultant and Bearing Stresses}

\(\mathrm{E}:=\frac{L_{\text {incl }}}{2}-\mathrm{x}_{0}=0.55 \mathrm{~m}\)

1- Stress Calculations



\section*{LC. 1 - Sliding}


Store results for summary

\section*{Load Case 2. Usual Loading Winter Case ( \(D+H+S+U+I\) )}

\section*{\(\mathrm{LC}=2\)}

\section*{LC. 2 - Forces from Structures}

\begin{tabular}{l}
\hline Fhor.roll \(_{\mathrm{LC}}=1240.4 \mathrm{kN}\) \\
\hline \(\mathrm{F}_{\text {ver.roll }}^{\mathrm{LC}}=1668 \cdot \textrm{kN}\) \\
\hline \(\mathrm{~F}_{\text {perp.roll }} \mathrm{LC}=1668 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{F}_{\text {para.roll }} \mathrm{LC}=1240.4 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{L}_{\text {comp.roll }} \mathrm{LC}=6.2 \mathrm{~m}\) \\
\hline \(\mathrm{M}_{\text {net.roll }} \mathrm{LC}=3854.6 \cdot \mathrm{kN} \cdot \mathrm{m}\) \\
\hline
\end{tabular}

Force acting in horizontal direction on structure
Forces acting in vertical direction on structure
Force acting perpendicular to base from structure
Force acting parallel to base from structure
Length of base in compression

Net resisting moment from structure

\section*{LC. 2 - Combine Forces and Moments}
\[
\begin{aligned}
& \text { Fhhr: }=\text { Fhor.pier }_{\text {LC }}+\text { Fhor.roll }_{\text {LC }}=1645 \cdot \mathrm{kN}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{F}_{\text {Rasallel }}:=\mathrm{F}_{\text {hor }} \cdot \cos \left(\alpha_{\text {avg }}\right)+\mathrm{F}_{\text {ver }} \cdot \sin \left(\alpha_{\text {avg }}\right)=1645.0 \cdot \mathrm{kN} \\
& \text { Fkerth }=- \text { Fhor }_{\text {h }} \cdot \sin \left(\alpha_{\text {avg }}\right)+F_{\text {ver }} \cdot \cos \left(\alpha_{\text {avg }}\right)=2975.1 \cdot \mathrm{kN}
\end{aligned}
\]

\section*{LC. 2 - Resultant and Bearing Stresses}


Stress Calculations


\section*{DESIGN CALCULATIONS}

Sheet: 6 of 15
GROUP
\(\frac{\mathrm{L}_{\text {comp }}}{\mathrm{L}_{\mathrm{incl}}}=100 \cdot \% \quad\) \% of Base in Compression \(\quad \frac{\mathrm{L}_{\text {tens }}}{\mathrm{L}_{\mathrm{incl}}}=0 . \% \quad\) \% of Base in Tension \(\quad \frac{\mathrm{L}_{\mathrm{crack}}}{\mathrm{L}_{\mathrm{incl}}}=0 . \% \quad \%\) of Base Cracked
Normal Stresses Acting on Base



\section*{LC. 2 - Sliding}
\(\operatorname{FSS}(\theta):=\frac{\mathrm{F}_{\text {comp }} \cdot \tan (\theta)+\mathrm{c} \cdot \mathrm{B} \cdot\left(\mathrm{L}_{\mathrm{comp}}+\frac{\mathrm{L}_{\text {tens }}}{2}\right)}{\mathrm{F}_{\text {parallel }}} \quad\) Define function to evaluate sliding using a range of friction angles
\(\operatorname{FSS}\left(\phi_{\mathrm{cf}}\right)=0.77 \quad\) Factor of safety against sliding for specified friction angle


Store results for summary

DESIGN CALCULATIONS

\section*{Load Case 3. Unusual Loading IDF ( \(D+H_{I D F}+S+U_{I D F}\) )}
\(L C=3\)
LC. 3 - Forces from Structures
\begin{tabular}{|c|c|c|}
\hline Fhor.pier \({ }_{\text {LC }}=296.2 \cdot \mathrm{kN}\) & Fhor.roll \(_{\text {LC }}=497.5 \mathrm{kN}\) & Force acting in horizontal direction on structure \\
\hline FVer .pier \(_{\text {LC }}=806.2 \cdot \mathrm{kN}\) & \(\mathrm{F}_{\text {ver.roll }} \mathrm{LC}=1533.2 \cdot \mathrm{kN}\) & Forces acting in vertical direction on structure \\
\hline Fperp.pier \(_{\text {LC }}=806.2 \cdot \mathrm{kN}\) & \(\mathrm{F}_{\text {perp.roll }}^{\text {LC }}\) \(=1533.2 \cdot \mathrm{kN}\) & Force acting perpendicular to base from structure \\
\hline \(\mathrm{F}_{\text {para.pier }}^{\text {LC }}\) = \(296.2 \cdot \mathrm{kN}\) & \(\mathrm{F}_{\text {para.roll }} \mathrm{LC}=497.5 \cdot \mathrm{kN}\) & Force acting parallel to base from structure \\
\hline \(\mathrm{L}_{\text {comp.pier }} \mathrm{LC}=8 \mathrm{~m}\) & \(\mathrm{L}_{\text {comp.roll }}{ }_{\mathrm{LC}}=6.2 \mathrm{~m}\) & Length of base in compression \\
\hline  & \(\mathrm{M}_{\text {net.roll }} \mathrm{LC}=5334.6 \cdot \mathrm{kN} \cdot \mathrm{m}\) & Net resisting moment from structure \\
\hline
\end{tabular}

\section*{LC. 3 - Combine Forces and Moments}
\[
\begin{aligned}
& \text { Fhoh: }=\text { Fhor.pier }_{\text {LC }}+\text { Fhor.roll }_{\text {LC }}=793.7 \cdot \mathrm{kN} \\
& \mathrm{~F}_{\text {Wert }}:=\text { F ver.pier }_{\text {LC }}+\mathrm{F}_{\text {ver.roll }}^{\text {LC }}=2339.4 \cdot \mathrm{kN}
\end{aligned}
\]
\(\mathrm{F}_{\mathrm{N} \text { adallel }}:=\mathrm{F}_{\text {hor }} \cdot \cos \left(\alpha_{\text {avg }}\right)+\mathrm{F}_{\text {ver }} \cdot \sin \left(\alpha_{\text {avg }}\right)=793.7 \cdot \mathrm{kN}\)
F \(_{\text {Whetri }}:=-\) Fhor \(_{\text {h }} \cdot \sin \left(\alpha_{\text {avg }}\right)+F_{\text {ver }} \cdot \cos \left(\alpha_{\text {avg }}\right)=2339.4 \cdot \mathrm{kN}\)


\section*{LC. 3 - Resultant and Bearing Stresses}

\(\mathrm{E}:=\frac{L_{\text {incl }}}{2}-\mathrm{x}_{0}=0.32 \mathrm{~m}\)
- Stress Calculations




\section*{LC. 3 - Sliding}
\[
\begin{aligned}
& \mathrm{FSS}(\theta):=\frac{\mathrm{F}_{\mathrm{comp}} \cdot \tan (\theta)+\mathrm{c} \cdot \mathrm{~B} \cdot\left(\mathrm{~L}_{\mathrm{comp}}+\frac{\mathrm{L}_{\text {tens }}}{2}\right)}{\mathrm{F}_{\text {parallel }}} \quad \text { Define function to evaluate sliding using a range of friction angles } \\
& \mathrm{FSS}\left(\phi_{\mathrm{cf}}\right)=1.25 \\
& \text { Factor of safety against sliding for specified friction angle }
\end{aligned}
\]

Store results for summary

\section*{Load Case 4. Unusual Loading Winter Case ( \(\mathrm{D}+\mathrm{H}+\mathrm{S}+\mathrm{U}+\mathrm{I}\) )}

\section*{\(\mathrm{LC}=4\)}

LC. 4 - Forces from Structures
\begin{tabular}{|c|}
\hline Fhor.pier \(_{\text {LC }}=431.8 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{F}_{\text {ver. } \mathrm{pier}_{\text {LC }}}=1307.1 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{F}_{\text {perp.pier }}^{\text {LC }}\) ( \(=1307.1 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{Fpara.pier}_{\mathrm{LC}}=431.8 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{L}_{\text {comp.pier }}{ }_{\text {LC }}=8 \mathrm{~m}\) \\
\hline \(\mathrm{M}_{\text {net.pier }} \mathrm{LC}=3603.8 \cdot \mathrm{kN}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & Fhor.roll \(_{\text {LC }}=1324.6 \mathrm{kN}\) \\
\hline & \(\mathrm{Fver}^{\text {roll }}{ }_{\mathrm{LC}}=1668 \cdot \mathrm{kN}\) \\
\hline & \(\mathrm{F}_{\text {perp.roll }}^{\text {LC }}\) = \(1668 \cdot \mathrm{kN}\) \\
\hline & \(\mathrm{F}_{\text {para.roll }}^{\text {LC }}\) \(=1324.6 \cdot \mathrm{kN}\) \\
\hline & \(\mathrm{L}_{\text {comp.roll }}^{\text {LC }}\) \(=6.2 \mathrm{~m}\) \\
\hline & \(\mathrm{M}_{\text {net.roll }} \mathrm{LCC}=3610.4 \cdot \mathrm{kN} \cdot \mathrm{m}\) \\
\hline
\end{tabular}

Force acting in horizontal direction on structure
Forces acting in vertical direction on structure
Force acting perpendicular to base from structure Force acting parallel to base from structure

Length of base in compression

Net resisting moment from structure

\section*{LC. 4 - Combine Forces and Moments}
\(\mathrm{F}_{\text {aradlel: }}=\mathrm{F}_{\text {hor }} \cdot \cos \left(\alpha_{\text {avg }}\right)+\mathrm{F}_{\mathrm{ver}} \cdot \sin \left(\alpha_{\text {avg }}\right)=1756.4 \cdot \mathrm{kN}\)



\section*{LC. 4 - Resultant and Bearing Stresses}

\(\mathrm{E}:=\frac{\mathrm{L}_{\text {incl }}}{2}-\mathrm{x}_{0}=1.11 \mathrm{~m}\)
Ecentricity of resultant (positive is to the right)

Stress Calculations



\section*{LC. 4 - Sliding}
\[
\begin{aligned}
& \text { Define function to evaluate sliding using a range of friction angles } \\
& \underset{\operatorname{FSS}(\theta):=\frac{(1)}{}}{\text { FsSarallel }} \\
& \text { Factor of safety against sliding for specified friction angle } \\
& \text { Friction Angle }
\end{aligned}
\]

Store results for summary

DESIGN CALCULATIONS

\section*{Load Case 5. Extreme Loading Earthquake ( \(D+H+S+Q+U_{Q}\) )}

\section*{\(L C=5\)}

LC. 5 - Forces from Structures
\begin{tabular}{|c|}
\hline Fhor.pier \(_{\text {LC }}=526.8 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{F}_{\text {ver. } \mathrm{pier}_{\mathrm{LC}}}=1112.9 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{F}_{\text {perp.pier }} \mathrm{LC}=1112.9 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{F}_{\text {para.pier }} \mathrm{LCC}=526.8 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{L}_{\text {comp.pier }}^{\text {LC }}\) = \(=7.2 \mathrm{~m}\) \\
\hline \(\mathrm{M}_{\text {net.pier }}{ }_{\text {LC }}=2675.9 \cdot \mathrm{k}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline Fhor.roll \({ }_{\text {LC }}=1309.4 \mathrm{kN}\) \\
\hline Fver.roll \(_{\text {LC }}=1817.3 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{F}_{\text {perp.roll }}{ }_{\mathrm{LC}}=1817.3 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{F}_{\text {para.roll }}^{\text {LC }}\) ( \(=1309.4 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{L}_{\text {comp.roll }} \mathrm{LC}=6.2 \mathrm{~m}\) \\
\hline 左 \\
\hline
\end{tabular}

Force acting in horizontal direction on structure
Forces acting in vertical direction on structure
Force acting perpendicular to base from structure
Force acting parallel to base from structure
Length of base in compression

LC. 5 - Combine Forces and Moments

> Fhor: \(=\) Fhor.pier \(_{\text {LC }}+\) Fhor.roll \(_{\text {LC }}=1836.2 \cdot \mathrm{kN}\)
> \(\mathrm{F}_{\mathrm{NXer}}:=\mathrm{F}_{\text {ver.pier }}^{\mathrm{LC}}{ }+\mathrm{F}_{\text {ver.roll }}^{\text {LC }}=2930.2 \cdot \mathrm{kN}\)
\(\mathrm{F}_{\text {Warallel }: ~}=\mathrm{F}_{\text {hor }} \cdot \cos \left(\alpha_{\text {avg }}\right)+\mathrm{F}_{\text {ver }} \cdot \sin \left(\alpha_{\text {avg }}\right)=1836.2 \cdot \mathrm{kN}\)
F \(_{\text {Whetri }}:=-\) Fhor \(_{\text {h }} \cdot \sin \left(\alpha_{\text {avg }}\right)+\mathrm{F}_{\text {ver }} \cdot \cos \left(\alpha_{\text {avg }}\right)=2930.2 \cdot \mathrm{kN}\)


\section*{LC. 5 - Resultant and Bearing Stresses}

\(\mathrm{E}:=\frac{\mathrm{L}_{\text {incl }}}{2}-\mathrm{x}_{0}=0.99 \mathrm{~m}\)
(1)Stress Calculations



\section*{LC. 5 - Sliding}
\(\underset{\operatorname{FSS}(\theta)}{\operatorname{FSS}\left(\phi_{\mathrm{cf}}\right)=0.68} \quad\) Ferine function to evaluate sliding using a range of friction angles


Store results for summary

\section*{Load Case 6. Extreme Loading Earthquake ( \(\mathrm{D}+\mathrm{H}+\mathrm{S}+\mathrm{Q}+\mathrm{U}_{Q}\) )}

\section*{\(\mathrm{LC}:=6\)}

LC. 6 - Forces from Structures

\begin{tabular}{l}
\hline Fhor.roll \(_{\mathrm{LC}}=1007.4 \mathrm{kN}\) \\
\hline \(\mathrm{F}_{\text {ver.roll }}^{\mathrm{LC}}\) \\
\(=2010.2 \cdot \mathrm{kN}\) \\
\hline Fperp.roll \(_{\mathrm{LC}}=2010.2 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{F}_{\text {para.roll }}^{\mathrm{LC}}\) \\
\(=1007.4 \cdot \mathrm{kN}\) \\
\hline \(\mathrm{L}_{\text {comp.roll }} \mathrm{LC}=6.2 \mathrm{~m}\) \\
\hline \(\mathrm{M}_{\text {net.roll }} \mathrm{LC}=6099.8 \cdot \mathrm{kN} \cdot \mathrm{m}\) \\
\hline
\end{tabular}

Force acting in horizontal direction on structure
Forces acting in vertical direction on structure
Force acting perpendicular to base from structure
Force acting parallel to base from structure
Length of base in compression
Net resisting moment from structure

\section*{LC. 6 - Combine Forces and Moments}
```

Fhorl: $=$ Fhor.pier $_{\text {LC }}+$ Fhor.roll $_{\text {LC }}=1371.2 \cdot \mathrm{kN}$
$\mathrm{F}_{\mathrm{wlerf}}:=\mathrm{F}_{\text {ver.pier }}^{\text {LC }}+F_{\text {ver.roll }}^{\text {LC }}=3176.2 \cdot \mathrm{kN}$
$\mathrm{F}_{\text {warallell }}:=\mathrm{F}_{\text {hor }} \cdot \cos \left(\alpha_{\text {avg }}\right)+\mathrm{F}_{\text {ver }} \cdot \sin \left(\alpha_{\text {avg }}\right)=1371.2 \cdot \mathrm{kN}$
F $_{\text {Werth }}:=-F_{\text {hor }} \cdot \sin \left(\alpha_{\text {avg }}\right)+F_{\text {ver }} \cdot \cos \left(\alpha_{\text {avg }}\right)=3176.2 \cdot \mathrm{kN}$
$M_{\text {net }}:=M_{\text {net.pier }}^{L C}+M_{\text {net.roll }}^{L C}=9405.8 \cdot \mathrm{kN} \cdot \mathrm{m}$

```

\section*{LC. 6 - Resultant and Bearing Stresses}


D-Stress Calculations


Ecentricity of resultant (positive is to the right)

> Distance of resulant from right side of base (measured parallel to base)

\section*{Normal Stresses Acting on Base}


\section*{LC. 6 - Sliding}

\section*{\(\operatorname{FSS}\left(\phi_{\mathrm{cf}}\right)=0.98\)}

Factor of safety against sliding for specified friction angle


Friction Angle

Store results for summary

\section*{Results of Analysis}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { FSS } \\
& \text { (Ф.cf) }
\end{aligned}
\] & E (m) & x. 0 (m) & L.comp (m) & \% of Base in Compression & L.crack
(m) & \begin{tabular}{l}
F.hor \\
(kN)
\end{tabular} & \begin{tabular}{l}
F.ver \\
(kN)
\end{tabular} & F.parallel (kN) & \begin{tabular}{l}
F.Perp \\
(kN)
\end{tabular} & \begin{tabular}{l}
q.max \\
(kPa)
\end{tabular} \\
\hline LC. 1 - Summer & 0.99 & 0.55 & 2.98 & 7.08 & 100\% & 0.00 & 1,371.2 & 3,210.2 & 1,371.2 & 3,210.2 & 57.6 \\
\hline LC. 2 - Winter (Usual) & 0.77 & 1.00 & 2.54 & 7.08 & 100\% & 0.00 & 1,645.0 & 2,975.1 & 1,645.0 & 2,975.1 & 67.0 \\
\hline LC. 3 - IDF & 1.25 & 0.32 & 3.21 & 7.08 & 100\% & 0.00 & 793.7 & 2,339.4 & 793.7 & 2,339.4 & 36.4 \\
\hline LC. 4 - Winter (Unusual) & 0.72 & 1.11 & 2.42 & 7.08 & 100\% & 0.00 & 1,756.4 & 2,975.1 & 1,756.4 & 2,975.1 & 70.6 \\
\hline LC. 5 - EQ & 0.68 & 0.99 & 2.54 & 7.08 & 100\% & 0.00 & 1,836.2 & 2,930.2 & 1,836.2 & 2,930.2 & 65.9 \\
\hline LC. 6 - Post - EQ & 0.98 & 0.58 & 2.96 & 7.08 & 100\% & 0.00 & 1,371.2 & 3,176.2 & 1,371.2 & 3,176.2 & 57.7 \\
\hline
\end{tabular}

\section*{Location of Resultant}


LC 1


LC 2


APPENDIX C
DAM SAFETY GENERAL INSPECTION (DSGI) SHEETS

\section*{DAM SAFETY GENERAL INSPECTION}
\begin{tabular}{lllll} 
Site Name: & Howson Dam (South structure) & River System: & North Maitland River \\
Dam Component: & Concrete Structures & HWL: 311.9 m (IDF from DSA) & TWL: & 310.3 m (IDF from DSA)
\end{tabular}

Description: This section has four sluice bays and an ogee type weir at El. 309.25 m (BM Ross, 2015). The top elevation of the deck of the structure is at El. 312.48 m (geodetic elevation provided by the Township of North Huron). Four bays, from north to south are \(10.6 \mathrm{~m}, 11.5 \mathrm{~m}, 10.8 \mathrm{~m}\), and 10.7 m in length (BM Ross 2013 a ).
Purpose: Originally built to prevent flooding and to create a reservoir for recreational use
Length: 54 m Height: approx. 6.5 m Width: 6.2 m (deck) ICC Rating: High (from DSA)

\section*{Summary of Inspection Observations and Identified Deficiencies:}

\section*{Recommended Actions:}
\begin{tabular}{|l|l|l|}
\hline Item & Summary of Inspection Observations and Identified Deficiencies: & Recommended Actions: \\
\hline & \begin{tabular}{l} 
Concrete of girders and decks in some areas are severely spalled and exposed \\
corroded rebar was evident. Collapse of the bridge could occur resulting in injury \\
or death to the public. \\
Rusted steel girders and decayed timber transverse beams
\end{tabular} & \begin{tabular}{l} 
Required to check the strength of the bridge for pedestrian \\
crossing based on the compressive strength of existing \\
concrete. Replacement or repair is required. \\
Clean the rust on the beams and paint it and replace the \\
decayed timber transverse beams.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Piers and abutments in some areas are severely spalled and map cracks were \\
evident. The concrete of upstream of pier 1 is mostly destroyed. Collapse of the \\
bridge could occur resulting in injury or death to the public. \\
Some of the stop logs are weathered and decayed.
\end{tabular} & \begin{tabular}{l} 
Required to check the strength of the bridge for pedestrian \\
crossing based on the compressive strength of existing \\
concrete. Replacement or repair is required. \\
Replace the decayed stop logs.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Upstream and downstream face of the weirs are spalled/severe spalled and \\
undercutting was observed in weir of span 4.
\end{tabular} & \begin{tabular}{l} 
Based on the compressive strength of the concrete the \\
replacement or repair is required. \\
Undercutting would be addressed.
\end{tabular} \\
\hline & Severe spalling and map crack were evident in areas of retaining walls. & \begin{tabular}{l} 
Based on the compressive strength of the concrete the \\
replacement or repair is required.
\end{tabular} \\
\hline Yr-\# & & \\
\hline
\end{tabular}

Date of Inspection: November 22, 2017 Date of Last Inspection: November 20, 2013
Weather: Cloudy
Persons Present During Inspection: Shan Gnanasunthar - Henry Safavian

\section*{DAM SAFETY GENERAL INSPECTION}

This is to certify that the above dam has been inspected and the following are the results of this inspection.

Name and Signature of Inspection Leader

SITE or STRUCTURE


\section*{DAM SAFETY GENERAL INSPECTION}
\begin{tabular}{|l|l|}
\hline DECK & [Photo 1 to 10] \\
\hline CONDITION & OBSERVATION: SKETCH, MEASURE, PHOTOGRAPH, LOCATE \\
\hline & \begin{tabular}{l} 
The in-situ concrete girders were spalled and disintegrated in many areas. The exposed \\
corroded rebar was evident. \\
Spalling was observed underside of the deck with exposed corroded rebar. Icicles hung from \\
underside of the girders can be an evidence of surface water seepage through the deck. \\
Downstream steel girders rusted in some areas and lost their sections. Decayed areas are \\
observed in wood transverse beams supported by steel beams. \\
Map cracks are observed on the asphalt. \\
Parapet was spalled in some areas with the evidence of exposed rebar.
\end{tabular} \\
\hline Condition of Joints & N/A \\
\hline Movement & None evident \\
\hline Hand Rails & N/A \\
\hline Gate Superstructure & N/A \\
\hline Chainage Markers & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ PIERS \& ABUTMENTS [Photo 11 to 23] } \\
\hline & OBSERVATION: SKETCH, MEASURE, PHOTOGRAPH, LOCATE \\
\hline CONDITION & \begin{tabular}{l} 
North abutment: Spalling, honeycombing and downstream stressed cracks \\
South abutment: Erosion along with water line as well as pattern cracks and cold joints \\
Piers: Pattern cracks (could be due to Alkaline-Aggregate-Reaction) upstream of all piers, \\
honeycombing, spalling and severe/very severe spalling and severe disintegration. \\
Upstream of pier 1 (from North) is mostly destroyed.
\end{tabular} \\
\hline Condition of Joints & N/A \\
\hline Movement & None evident \\
\hline \begin{tabular}{l} 
Waterline \\
Deterioration
\end{tabular} & Erosion in few areas. \\
\hline Beam Seats & N/A \\
\hline \begin{tabular}{l} 
Stop Log/Gate Gains \\
\& Covers
\end{tabular} & Weathering and decay were observed in stop logs. \\
\hline
\end{tabular}

\section*{DAM SAFETY GENERAL INSPECTION}
WEIR
[Photo 24 to 30]
\begin{tabular}{|l|l|}
\hline CONDITION & OBSERVATION: SKETCH, MEASURE, PHOTOGRAPH, LOCATE \\
\hline Surface Condition & \begin{tabular}{l} 
Spalling/severe spalling upstream and downstream of ogee type weir and spalling on the \\
exposed apron
\end{tabular} \\
\hline Condition of Joints & N/A \\
\hline Movement & None evident \\
\hline Undercutting & Evident in span 4 (numbering from North) \\
\hline
\end{tabular}

\section*{RETANING WALL}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|l|}{ UPSTREAM FACE } & [Photo 31 to 33] \\
\hline CONDITION & OBSERVATION: SKETCH, MEASURE, PHOTOGRAPH, LOCATE \\
\hline Surface Condition & Almost entire upstream face of the South retaining wall severely spalled \\
\hline Condition of Joints & N/A \\
\hline Movement & None evident \\
\hline \begin{tabular}{l} 
Waterline \\
Deterioration
\end{tabular} & N/A \\
\hline
\end{tabular}

\section*{DOWNSTREAM FACE [Photo 34 to 36]}
\begin{tabular}{|l|l|}
\hline CONDITION & OBSERVATION: SKETCH, MEASURE, PHOTOGRAPH, LOCATE \\
\hline Surface Condition & \begin{tabular}{l} 
Severely spalling and pattern cracks (could be due to Alkaline-Aggregate-Reaction) \\
downstream of the South retaining wall
\end{tabular} \\
\hline Condition of Joints & N/A \\
\hline Movement & None evident \\
\hline \begin{tabular}{l} 
Waterline \\
Deterioration
\end{tabular} & N/A \\
\hline
\end{tabular}

DAM SAFETY GENERAL INSPECTION

PHOTOS/SKETCHES/FIGURES


Photo 1 - Top of the Deck - Map Crack in Asphalt Looking North


Photo 2 - Spalled Concrete and Exposed Rebar in Parapet - Looking Upstream


Photo 3 - Diagonal Crack in Parapet


Photo 4 - Severe Spalled Concrete with Exposed Corroded Rebar underneath the Deck - Span 4


Photo 5 - Spalling and Exposed Corroded Rebar underside of the Girders and Deck - Span 4 Looking South


Photo 6 - Spalling and Exposed Corroded Rebar underside of the Girders and Deck - Span 2 Looking


Photo 7 - Icicles underneath the Girders with Severe Spalling and Exposed Corroded Rebar - Span 3


Photo 8 - Severe Spalling and Exposed Corroded rebar underneath the Girder - Span 3 Looking North


Photo 9 - Severe Spalling underneath the Girder - Span 2 Upstream


Photo 10 - Rusted Steel I Beam and Decayed Timber Transverse Beam- Span 1 Looking South


Photo 11 - North Abutment - Looking North


Photo 12 - North Abutment Spalling and Honeycombing - Looking North


Photo 13 - North Abutment wide Crack - Looking Northeast


Photo 14 - South Abutment - Erosion, Joint Cold and Pattern Cracks


Photo 15 - Spalling and Pattern Cracks on Downstream of Piers - Looking South


Photo 16 - Severe Spalling and Honeycombing on Pier 1 (from North) - Looking Southwest


Photo 17 - Severe Spalling and Pattern Cracks on Pier 1 (from North) - Looking South


Photo 18 - Severe Spalling, Honeycombing and Hole in Pier 1 - Looking South


Photo 19 - Severe Spalling, Disintegration and Pattern Cracks on Pier 1 \& 2 - Looking North


Photo 20 - Destroyed and Very Severe Spalled Concrete - Upstream of Pier 1 Looking South


Photo 21 - Spalling on Pier 2 (from North) - Looking North


Photo 22 - Severe Disintegration, Spalling and Pattern Cracks on Pier 3 - Looking South


Photo 23 - Weathered and Decayed Stop logs - Looking South


Photo 24 - Spalled Concrete - Upstream Weir of Span 1 (from North)


Photo 25 - Spalled Concrete - Downstream Weir of Span 1 Looking South


Photo 26 - Spalled Apron - Span 1 Looking Downstream


Photo 27 - Spalled Concrete - Upstream Weir of Spans 1 \& 2 (from North) Looking North


Photo 28 - Spalled Concrete - Upstream Weir of Span 4 (from North)


Photo 29 - Undercutting and Spalled Concrete - Span 4 (from North)


Photo 30 - Spalled Concrete - Upstream Weir Looking North


Photo 31 - North Upstream Retaining Wall - Severe Spalling


Photo 32 - North Upstream Retaining Wall - Severe Spalling


Photo 33 -South Upstream Retaining Wall - Severe Spalling


Photo 34 - North Downstream Retaining Wall - Spalling and Pattern Cracks


Photo 35 - North Downstream Retaining Wall - Spalling and Pattern Cracks


Photo 36 - North Downstream Retaining Wall - Severe Spalling

APPENDIX D
COST ESTIMATE ALTERNATIVES

\section*{TABLE D1}

COST ESTIMATES DAM DECOMMISSIONING
\begin{tabular}{|l|r|r|}
\hline \multicolumn{1}{|c|}{ DESCRIPTION } & \multicolumn{1}{c|}{ COST } \\
\hline CONSTRUCTION COSTS (ROUNDED) & \(12 \%\) & \(\$\) \\
\hline DESIGN, ENGINEERING AND PERMITTING & \(\$ 36,000\) \\
\hline CONSTRUCTION COST CONTINGENCY & \(25 \%\) & \(\$ 74,000\) \\
\hline OWNER'S ADMINISTRATIVE COST (including overhead and project management) & \(10 \%\) & \(\$ 30,000\) \\
\hline & & \(\$ 436,000\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DESCRIPTION & UNIT & QUANTITY & \multicolumn{2}{|r|}{RATE} & \multicolumn{2}{|r|}{AMOUNT} \\
\hline MOBILIZATION & Lump Sum & 1 & \$ & 28,560 & \$ & 28,560 \\
\hline DEMOBILIZATION & Lump Sum & 1 & \$ & 14,280 & \$ & 14,280 \\
\hline ENVIRONMENT AL PROGRAM \& ENVIRONMENT AL MONITORING & Month & 6 & \$ & 9,520 & \$ & 57,120 \\
\hline SITE RESTORATION AND CLEANING & Lump Sum & 1 & \$ & 5,712 & \$ & 5,712 \\
\hline DEMOLITION OF COFFERDAM AND WATER DIVERSION MEASURES & \(\mathrm{m}^{3}\) & 680 & & \$280 & \$ & 190,400 \\
\hline \multicolumn{5}{|l|}{TOTAL COSTS SITE STUDIES AND CONSTRUCTION} & \$ & 296,072 \\
\hline
\end{tabular}

\section*{COST ESTIMATES DAM REHABILITATION WITH POST-TENSION ANCHORS}
\begin{tabular}{|l|r|r|}
\hline \multicolumn{1}{|c|}{ DESCRIPTION } & \multicolumn{1}{c|}{ COST } \\
\hline CONSTRUCTION COSTS (ROUNDED) & \(12 \%\) & \(\$ 234,0000\) \\
\hline DESIGN, ENGINEERING AND PERMITTING & \(25 \%\) & \(\$ 488,000\) \\
\hline CONSTRUCTION COST CONTINGENCY & \(10 \%\) & \(\$ 195,000\) \\
\hline OWNER'S ADMINISTRATIVE COST (including overhead and project management) & & \(\$ 2,869,000\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DESCRIPTION & UNIT & QUANTITY & & RATE & & OUNT \\
\hline MOBILIZATION & Lump Sum & 1 & \$ & 153,798 & \$ & 153,798 \\
\hline DEMOBILIZATION & Lump Sum & 1 & \$ & 76,899 & \$ & 76,899 \\
\hline ENVIRONMENT AL PROGRAM \& ENVIRONMENT AL MONIT ORING & Month & 1 & \$ & 76,899 & \$ & 76,899 \\
\hline GEOTECHNICAL INVESTIGATION & Lump Sum & 1 & \$ & 50,000 & \$ & 50,000 \\
\hline MATERIAL QUALITYCONTROL - INDEPENDENT LABORATORY & Lump Sum & 1 & \$ & 10,000 & \$ & 10,000 \\
\hline SITE RESTORATION AND CLEANING & Lump Sum & 1 & \$ & 46,139 & \$ & 46,139 \\
\hline DEMOLITION OF BRIDGE DECK AND PART OF PIERS & m3 & 400 & \$ & 280 & \$ & 112,000 \\
\hline MODULAR COFFERDAM & kg & 4545 & \$ & 15 & \$ & 68,175 \\
\hline SEAL MEASURES FOR DIVERSION & Lump Sum & 1 & \$ & 9,800 & \$ & 9,800 \\
\hline INSTALLAT ION OF ANCHORS & m & 340 & \$ & 2,000 & \$ & 680,000 \\
\hline CONCRETE SURFACE REPAIR & m3 & 167 & \$ & 4,000 & \$ & 668,000 \\
\hline \multicolumn{5}{|l|}{TOTAL COSTS SITE STUDIES AND CONSTRUCTION} & \$ & 1,951,709 \\
\hline
\end{tabular}

TABLE D3
COST ESTIMATES DAM REHABILITATION WITH ADDED MASS
\begin{tabular}{|l|r|r|}
\hline \multicolumn{1}{|c|}{ DESCRIPTION } & \multicolumn{1}{c|}{ COST } \\
\hline CONSTRUCTION COSTS (ROUNDED) & & \(\$ 3,116,000\) \\
\hline DESIGN, ENGINEERING AND PERMITTING & \(12 \%\) & \(\$ 374,000\) \\
\hline CONSTRUCTION COST CONTINGENCY & \(25 \%\) & \(\$ 779,000\) \\
\hline OWNER'S ADMINISTRATIVE COST (including overhead and project management) & \(10 \%\) & \(\$ 312,000\) \\
\hline & & \(\$ 4,581,000\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DESCRIPTION & UNIT & QUANTITY & & RATE & & MOUNT \\
\hline MOBILIZATION & Lump Sum & 1 & \$ & 248,415 & \$ & 248,415 \\
\hline DEMOBILIZATION & Lump Sum & 1 & \$ & 124,208 & \$ & 124,208 \\
\hline ENVIRONMENTAL PROGRAM \& ENVIRONMENTAL MONITORING & Month & 1 & \$ & 124,208 & \$ & 124,208 \\
\hline GEOTECHNICAL INVESTIGATION & Lump Sum & 1 & \$ & 50,000 & \$ & 50,000 \\
\hline MATERIAL QUALIT Y CONTROL - INDEPENDENT LABORATORY & Lump Sum & 1 & \$ & 10,000 & \$ & 10,000 \\
\hline SITE RESTORATION AND CLEANING & Lump Sum & 1 & \$ & 74,525 & \$ & 74,525 \\
\hline DEMOLITION OF BRIDGE DECK AND PART OF PIERS & m3 & 400 & \$ & 280 & \$ & 112,000 \\
\hline MODULAR COFFERDAM & kg & 9090 & \$ & 15 & \$ & 136,350 \\
\hline SEAL MEASURES FOR DIVERSION & Lump Sum & 1 & \$ & 9,800 & \$ & 9,800 \\
\hline CONCRETE REMOVAL IN WEIRS & cu.m & 224 & \$ & 3,000 & \$ & 672,000 \\
\hline INSTALLATION OF NEW CONCRETE & cu.m & 777 & \$ & 2,000 & \$ & 1,554,000 \\
\hline \multicolumn{5}{|l|}{TOTAL COSTS SITE STUDIES AND CONSTRUCTION} & \$ & 3,115,505 \\
\hline
\end{tabular}

\section*{TABLE D4 \\ COST ESTIMATES DAM REPLACEMENT WITH CONCRETE WEIR}
\begin{tabular}{|l|r|r|}
\hline \multicolumn{1}{|c|}{ DESCRIPTION } & \multicolumn{1}{c|}{ COST } \\
\hline CONSTRUCTION COSTS (ROUNDED) & \(12 \%\) & \(\$ 4,224,000\) \\
\hline DESIGN, ENGINEERING AND PERMITTING & \(25 \%\) & \(\$ 1,056,000\) \\
\hline CONSTRUCTION COST CONTINGENCY & \(10 \%\) & \(\$ 422,000\) \\
\hline OWNER'S ADMINISTRATIVE COST (including overhead and project management) & & \(\$ 6,209,000\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DESCRIPTION & UNIT & QUANTITY & & RATE & & MOUNT \\
\hline MOBILIZATION & Lump Sum & 1 & \$ & 338,573 & \$ & 338,573 \\
\hline DEMOBILIZATION & Lump Sum & 1 & \$ & 169,287 & \$ & 169,287 \\
\hline ENVIRONMENTAL PROGRAM \& ENVIRONMENTAL MONITORING & Month & 1 & \$ & 169,287 & \$ & 169,287 \\
\hline GEOTECHNICAL INVESTIGATION & Lump Sum & 1 & \$ & 50,000 & \$ & 50,000 \\
\hline MATERIAL QUALITYCONTROL - INDEPENDENT LABORATORY & Lump Sum & 1 & \$ & 10,000 & \$ & 10,000 \\
\hline SITE RESTORATION AND CLEANING & Lump Sum & 1 & \$ & 101,572 & \$ & 101,572 \\
\hline REMOVAL OF EXISTING DAM & \(\mathrm{m}^{3}\) & 680 & \$ & 280 & \$ & 190,400 \\
\hline MODULAR COFFERDAM & kg & 12810 & \$ & 15 & \$ & 192,150 \\
\hline BACKFILL FOR DIVERSION & \(\mathrm{m}^{3}\) & 308 & \$ & 50 & \$ & 15,400 \\
\hline SEAL MEASURES FOR DIVERSION & Lump Sum & 1 & \$ & 8,580 & \$ & 8,580 \\
\hline NEW CONCRETE STRUCTURE & \(\mathrm{m}^{3}\) & 1410 & \$ & 2,000 & \$ & 2,820,000 \\
\hline RIP RAP & \(\mathrm{m}^{3}\) & 72 & \$ & 100 & \$ & 7,200 \\
\hline SUPPLY AND INST ALLATION OF SHEET PILES & \(\mathrm{m}^{2}\) & 180 & \$ & 800 & \$ & 144,000 \\
\hline DRAIN SYSTEM & unit & 4 & \$ & 2,000 & \$ & 8,000 \\
\hline \multicolumn{5}{|l|}{TOTAL COSTS SITE STUDIES AND CONSTRUCTION} & \$ & 4,224,448 \\
\hline
\end{tabular}

\title{
TABLE D5 \\ COST ESTIMATES DAM REPLACEMENT WITH NEW EMBANKMENT AND NEW SLUICEWAY
}
\begin{tabular}{|l|r|r|}
\hline \multicolumn{1}{|c|}{ DESCRIPTION } & \multicolumn{1}{c|}{ COST } \\
\hline CONSTRUCTION COSTS (ROUNDED) & & \(\$ 2,694,000\) \\
\hline DESIGN, ENGINEERING AND PERMITTING & \(12 \%\) & \(\$ 323,000\) \\
\hline CONSTRUCTION COST CONTINGENCY & \(25 \%\) & \(\$ 674,000\) \\
\hline OWNER'S ADMINISTRATIVE COST (including overhead and project management) & \(10 \%\) & \(\$ 269,000\) \\
\hline & & \(\$ 3,960,000\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DESCRIPTION & UNIT & QUANTITY & & TE & & OUNT \\
\hline MOBILIZATION & Lump Sum & 1 & \$ & 214,108 & \$ & 214,108 \\
\hline DEMOBILIZATION & Lump Sum & 1 & \$ & 107,054 & \$ & 107,054 \\
\hline ENVIRONMENTAL PROGRAM \& ENVIRONMENT AL MONITORING & Month & 1 & \$ & 107,054 & \$ & 107,054 \\
\hline GEOTECHNICAL INVESTIGATION & Lump Sum & 1 & \$ & 50,000 & \$ & 50,000 \\
\hline MATERIAL QUALITY CONTROL - INDEPENDENT LABORAT ORY & Lump Sum & 1 & \$ & 10,000 & \$ & 10,000 \\
\hline SITE RESTORATION AND CLEANING & Lump Sum & 1 & \$ & 64,232 & \$ & 64,232 \\
\hline DEMOLITION OF BRIDGE DECK AND PART OF PIERS & \(\mathrm{m}^{3}\) & 680 & \$ & 280 & \$ & 190,400 \\
\hline MODULAR COFFERDAM & kg & 12810 & \$ & 15 & \$ & 192,150 \\
\hline BACKFILL FOR DIVERSION & \(\mathrm{m}^{3}\) & 308 & \$ & 50 & \$ & 15,400 \\
\hline SEAL MEASURES FOR DIVERSION & Lump Sum & 1 & \$ & 8,580 & \$ & 8,580 \\
\hline EMBANKMENT DAM & & & & & & \\
\hline Clearing / Grubbing of vegetation & \(\mathrm{m}^{2}\) & 2000 & \$ & 10 & \$ & 20,000 \\
\hline Subgrade Preparation & \(\mathrm{m}^{2}\) & 2000 & \$ & 15 & \$ & 30,000 \\
\hline Supplying \& placing Earth Embankment Backfill (Till Material) & \(\mathrm{m}^{3}\) & 6200 & \$ & 30 & \$ & 186,000 \\
\hline Supplying \& Placing Riprap (Upstream Slope)-500 mm thick & \(\mathrm{m}^{3}\) & 400 & \$ & 120 & \$ & 48,000 \\
\hline Supplying \& Placing Riprap (Downstream Slope)-500 mm thick & \(\mathrm{m}^{3}\) & 200 & \$ & 120 & \$ & 24,000 \\
\hline Steel Sheet Piling Cut-off & \(\mathrm{m}^{2}\) & 400 & \$ & 450 & \$ & 180,000 \\
\hline Supplying and placing Granular backfill (Crest, 300 mm thick) & \(\mathrm{m}^{3}\) & 150 & \$ & 45 & \$ & 6,750 \\
\hline Turf Mat and seeding & \(\mathrm{m}^{2}\) & 900 & \$ & 15 & \$ & 13,500 \\
\hline SLUICEWAY STRUCTURE & & & & & & \\
\hline New Concrete & \(\mathrm{m}^{3}\) & 540 & \$ & 2,000 & \$ & 1,080,000 \\
\hline Rip Rap & \(\mathrm{m}^{3}\) & 18 & \$ & 100 & \$ & 1,800 \\
\hline Supply and Installation of Sheet Piles & \(\mathrm{m}^{2}\) & 40 & \$ & 800 & \$ & 32,000 \\
\hline Winches and supports & unit & 2 & \$ & 9,000 & \$ & 18,000 \\
\hline Stoplogs & unit & 24 & \$ & 2,000 & \$ & 48,000 \\
\hline Metal Railings & m & 55 & \$ & 700 & \$ & 38,500 \\
\hline Signage & unit & 2 & \$ & 4,000 & \$ & 8,000 \\
\hline \multicolumn{5}{|l|}{TOTAL COSTS SITE STUDIES AND CONSTRUCTION} & \$ & 2,693,528 \\
\hline
\end{tabular}

KGS
GROUP
CONSULTING
ENGINEERS```


[^0]:    回-

